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Abstract—Video applications are increasingly popular over
smartphones. However, in current cellular systems, the downlink
data rate fluctuates and the loss rate can be quite high. We are
interested in the scenario where a group of smartphone users,
within proximity of each other, are interested in viewing the
same video at the same time and are also willing to cooperate
with each other. We propose a system that maximizes the video
quality by appropriately using all available resources, namely
the cellular connections to the phones as well as the device-to-
device links that can be established via Bluetooth or WiFi. Key
ingredients of our design are: (i) the cooperation among users,
(ii) network coding, and (iii) exploiting broadcast in the mobile-
to-mobile links. Our approach is grounded on a network utility
maximization formulation of the problem. We present numerical
results that demonstrate the benefit of our approach, and we
implement a prototype on android phones.

I. INTRODUCTION

The significant progress in video compression techniques,

wireless data communication, and cross layer design are

continuously advancing the state-of-the art in wireless video.

On one hand, the data transmission rates of wireless networks

are steadily growing, e.g., 100Mbps for mobile users in 4G

systems [1]. On the other hand, H.264/MPEG4-AVC [2]

achieves more efficient video compression and the Scalable

Video Coding (SVC) extension [3] of H.264/MPEG4-AVC

obtains both high coding efficiency and high scalability.

However, providing high quality video over wireless net-

works is still a challenging problem, because the demand for

video applications over current networks is exponentially in-

creasing [4]. However, in current 3G/4G systems, the downlink

data rate fluctuates and the service loss rate can be as high as

50% [5]. This makes it challenging to provide high quality

video to mobile users without interruptions.

In this paper, we are interested in the scenario where a group

of smartphone users (or “nodes”1), within proximity of each

other, are interested in viewing the same video at the same

time. We seek to maximize the video quality by cooperatively

using all available resources, namely: the cellular connections

to all users and mobile-to-mobile links that can be established

through Bluetooth or WiFi. Key ingredients of our design are

the following:

1) Cooperation among users, in the use of both the down-

This work has been supported by an AFOSR MURI (FA9550-09-0643),
the NSF CAREER (0747110) and by ArmaSwisse W+T (Project No.
8003413832).

1We use the terms “smartphone”, “user” and “node” interchangeably.

Fig. 1. Cooperative video streaming system. A group of smartphone users,
within proximity of each other, are interested in viewing the same video at
the same time. Each smartphone has Internet connection via 3G or 4G. When
a user is interested in viewing a video, it connects to the video source (e.g.,

YouTube or Netflix) via its base station, which may be the same or different for
different users, depending on the provider their use. The proxy, in our system,
is responsible for selecting the video rate and performing network coding.
Each smartphone receives packets from the source (via the base station and
video proxy) as well as from other smartphones in the neighborhood, through
device-to-device (Bluetooth or WiFi) links.

links and the local links.2

2) Network coding used on the downlink (from the proxy to

the users) as well as on the local links (between users).

3) Exploiting the broadcast nature of the wireless channel

on the local links (while the downlinks are unicast 3G).

This scenario is illustrated in Fig. 1.

In designing such a system, a number of questions need

to be addressed. (1) What should be the video rate at the

source? (2) How to use the downlink connections? They could

download the same or different packets, or they could use

some level of redundancy. In this paper, we choose to use

the downlink connections in parallel and have them download

different parts of the video, so as to maximize the aggregate

download rate. (3) At which rate should a node transmit

packets to its neighbors and which packets should it transmit?

(4) What information needs to be exchanged between the

nodes and the source/proxy in order to make these decisions?

2In this paper, we consider downlink connections (3G) that do not interfere
with the local links (WiFi or Bluetooth). We extend our scheme to the case
where downlink and local links compete for resources in [6]. This is, for
example, the case when smartphones download video from a WiFi access
point and also exchange data with each other via WiFi.



(5) Should network coding be used at the proxy and/or at the

local links? (6) How much benefit do we get from using the

local links as broadcast vs. unicast? Is broadcast/overhearing

practical in a real implementation?

Our approach is grounded on a network utility maximization

formulation of the problem. We consider several variants of

the problem, depending on whether the local links are used as

unicast or broadcast, and on whether network coding is used.

The solution of each problem decomposes into several parts

with an intuitive interpretation. We perform numerical calcula-

tions for a range of parameters, and we show that the scheme

that combines all three ingredients, namely Cooperation &

Broadcast & NC, outperforms all other schemes. Finally, we

have implemented a prototype of these systems on android

phones. We briefly mention some challenges we faced in going

from theory to practice, but we omit the description of the

android testbed.

The structure of the rest of the paper is as follows. Sec-

tion II presents related work. Section III gives an overview

of the system. Section IV presents the NUM formulation and

solution. Section V briefly discusses some of the challenges

we faced in implementing our scheme on androids. Section VI

presents numerical calculations that demonstrate the superior

performance of the Cooperation & Broadcast & NC scheme

in range of scenarios; we also report preliminary results from

the android testbed. Section VII concludes the paper.

II. RELATED WORK

Network coding for peer-to-peer systems. Network coding

makes distributed scheduling easier and, as a result, it im-

proves the efficiency of content distribution [8], and live peer-

to-peer networks in [9] [10]. An excellent review on network

coding-based peer-to-peer networks is presented in [11].

Network utility maximization (NUM) of coded systems. The

NUM framework [12], [13] can be applied in networks with

network coding, in order to understand how different layers

and/or functional modules (such as flow control, congestion

control, routing, etc.) should be modified when network coding

is used. The problem of establishing minimum-cost multicast

connections over coded wired and wireless networks is consid-

ered in [14] and was extended for end-to-end rate/congestion

control over wired coded networks in [15]. A cross-layer

optimization framework including routing and scheduling to

maximize throughput over coded wireless mesh networks for

multicast flows is studied in [16]. Linear optimization models

for computing a high-bandwidth routing strategy for media

multicast in coded wireless networks are proposed in [17].

The NUM framework has also been applied to peer-to-

peer networks with network coding. In [18], the aggregate

application-specific utility is maximized by distributed algo-

rithms on peers, which are constrained by their uplink ca-

pacities. [20] extends [18] by considering node-capacities and

constraints on both node upload capacity and node download

capacity. In [19], the authors derive performance bounds for

minimum server load, maximum streaming rate, and min-

imum tree depth under different peer selection constraints,

but without network coding. The optimal bandwidth sharing

in multi-swarm multiparty peer-to-peer video-conferencing

systems with helpers is considered in [21]. Multi-rate peer-

to-peer multi-party conferencing applications, where different

receivers in the same group can receive videos at different rates

using, for example, scalable layered coding are considered in

[22]. The Implicit-Primal-Dual scheme for flow control in live

streaming peer-to-peer systems is introduced in [23]. [24],

which is the closest to our work, proposes a scalable video

broadcast/multicast scheme that efficiently integrates scalable

video coding, 3G broadcast, and ad-hoc forwarding so as to

balance the system-wide and worst-case video quality of all

viewers at 3G cell. Different from this work we consider (i) 3G

links as multiple unicast transmissions, while in [24], multicast

links are assumed, and (ii) network coding. Note that consid-

ering multiple unicast links are crucial in practice because

current 3G/4G systems only support unicast transmissions.

Network coding for error correction and local cooperation.

Wireless links (3G/4G or WiFi) suffer from packet loss due

to noise and interference. One possible solution to tackle

this problem is to have several devices in a close proximity

help each other with retransmissions of lost packets. In this

case, network coding is particularly beneficial because a linear

combination is more useful to more than one nodes. Rate-

distortion optimized network coding for cooperative video

system repair in wireless peer-to-peer networks is considered

in [25]. Wireless video broadcasting with peer-to-peer error

recovery is proposed in [26]. An efficient scheduling approach

to network coding for wireless local repair is introduced in

[27]. [28] proposes a cooperative IPTV system with pseudo-

broadcast to improve reliability. [29] proposes a system, in

which a group of smartphone users (which are connected to

the Internet via LTE links) help each other for error correction:

base stations broadcast packets as in [24]. Although Multime-

dia Broadcast Multicast Services (MBMS) are provisioned for

LTE [1], they are currently not implemented.

Network coding on smartphones and WiFi testbeds. The

practicality of random network coding over iPhones is dis-

cussed in [31]. A toolkit to make network coding practical for

system devices from servers to smartphones is introduced in

[32]. A gesture broadcast protocol is designed for concurrent

gesture streams in multiple broadcast sessions in [33] over

smartphones using inter-session network coding. Our work

is different in (i) the application scenario, i.e., cooperative

video streaming on smartphones using network coding, (ii)

the fact that we combine application layer network coding

with broadcast in the local connections, and (iii) the fact

that we combine NUM and implementation. There are also

WiFi testbeds that implement network coding, such as the

COPE testbed [30]. However some of the functionality needed

is much more challenging on androids than on laptops. For

example, to support pseudobroadcast, we had to implement a

sniffer to pass overheard packers to the application layer.

Our work in perspective. The contributions of this work lie:

in (i) the particular combination of the three ingredients of

cooperation, network coding and (pseudo)broadcast and in (ii)



Fig. 2. A simplified model of the video streaming system. Here, the “source”
corresponds to the video source and a video proxy. The source transmits a
video flow to a set of smartphones; N .

the combination of analysis and implementation. In summary,

the main differences from prior work are the following:

• We consider each cellular connection as a separate uni-

cast, which is the case in today’s 3G/4G systems. In

contrast, [24], [29] considers multicast on the downlink.

• In prior work [25], [26], [29], cooperation is used for

error recovery in the local area. In addition, in our

scheme, nodes cooperate in the use of their downlink

as well: nodes download different parts of the stream

through their cellular connection and share it with their

neighbors through local links.

• We consider that nodes cooperate for the use of both the

3G/4G links and the local area (WiFi/Bluetooth) links.

• We propose a practical scheme based on the structure of

the NUM solution, and we implement a proof-of-concept

prototype on androids.

• We employ pseudo-broadcast in local WiFi links (instead

of broadcast) to use wireless media efficiently. To the best

of our knowledge, this is the first time that this is done

specifically on smartphones.

In this paper, we focus on the NUM formulation and solution.

Additional materials (including convergence results, packet-

based implementation based on the structure of the NUM

solution, formulation when WiFi is used on both downlink

and local links) is in [6]. The android testbed is ongoing work;

information can be found on the project webpage [7].

III. SYSTEM OVERVIEW

In the rest of the paper, we consider a system model

presented in Fig. 2: the source transmits a video to a set of

smartphones; N . This is a simplified version of Fig. 1 in that

the “source” represents the video source, the proxy and the

base station. This allows us to focus on the bottlenecks of

the system, namely the downlinks from the base station to the

smartphones and the local area links. The links between the

source and a video proxy and the links from the video proxy

to the base stations are high capacity, low delay links, thus

not the bottleneck.

A. Notation and Setup

1) Source and Flows: The source transmits a video flow

to a set of nodes N with rate x. The video flow is associated

with a utility function U(x), which we assume to be a strictly

concave function of x.

2) Wireless Transmission & Loss Model:

Cellular Links: Each node i ∈ N is connected to the source

via cellular (3G/4G) link with capacity Ci and loss probability

pi. Note that since the nodes may connect to different base

stations and the interference of cellular links are handled by the

base-stations, we consider that the downlinks are interference

free. The interference implicitly affects the capacity of the

link, and we consider that the link capacity information is

available in our analysis. Consequently, we consider |N |
parallel interference-free links, operating simultaneously, from

the source to each node.

Local Area Links - WiFi: Each node n ∈ N is connected to

each other in the local area. The capacity between smartphone

i and smartphone j is Ci,j and the loss probability is pi,j .

We consider the interference model in [34]: each node can

either transmit or receive at a time and all transmissions in the

range of the receiver are considered as interfering. Note that

since we consider a group of nodes (i.e., smartphones) within

proximity of each other, we do not consider multi-hop packet

transmissions in the local area. Therefore, any transmission in

the local area interferes with any other transmission, and only

one node can transmit at a time.

Local Area Links - Bluetooth: The nodes n ∈ N in a

cooperating group form a piconet in which one node behaves

as a master and the others as slaves. One slave can transmit

to another slave via the master. The master coordinates the

frequency hopping pattern as well as who should transmit at a

time (according to time division multiplexing). Thus, only one

node can transmit at a given time. Yet, piconets are limited

up to eight nodes (one master and seven slaves). Therefore,

if the number of nodes in a cooperating group increases, we

consider multiple piconets, as known as scatternets. Scatternets

allow the master in one piconet to operate as a slave in another

piconet. In scatternets, only one node can transmit at a time

slot, because each node would like to receive data from each

other in a cooperating group. In summary, each node in a

piconet (or multiple piconets) transmit data in a time slot

allocated to this node at rate Cb and with loss probability

pb (which is in general very small, e.g., 1%).

Loss Model: In our formulation and analysis, we assume

that pi, pi,j , and pb are i.i.d. according to a uniform distribu-

tion. In practice, the channel model may follow a different (and

most probably time varying) distribution. However, our system

implementation does not need to know the loss probabilities

or probability distributions [6].

B. Network Coding & Cooperation

1) Network Coding: In our NUM formulation, we consider

that the size of video is infinite, and each packet is a linear

combination of all packets in the video. In practice, we

consider the commonly used generation-based network coding

[35]: packets from a flow are divided into generations (note

that we use “generation” and “block” terms interchangeably),

with size G. At the source, packets within the same generation



are linearly combined (assuming large enough field size) to

generate G network coded packets. Network coding makes

the process sequence agnostic, which allows each receiving

node to be able to decode packets from a generation with

high probability as long as it receives G packets.

The source divides video flow into generations. The set of

packets in the g-th generation is Gg which consists of Gg =
|Gg| packets. The source uses random linear network coding

[36], in which packets are coded by using coefficients from

a large enough finite field. The set of coded packets is G
′

g .

The source does not generate one set of coded packets G
′

g to

transmit a set of N nodes, but a different set for each node.

In other words, all network coded packets from all sets are

linearly independent); i.e., G
′
1
g , G

′
2
g , ..., G

′N
g where N = |N |.

This allows us to utilize the multiple 3G/4G links in parallel.

2) Cooperation: A number of nodes which are interested

in the same video content construct a cooperating group. In

general, the nodes can join to and leave the group according

to some rules [6]. However, in this paper, we consider that all

of the nodes cooperate to construct a single group and are all

trusted, i.e., do not engage in malicious behavior. We do not

consider multi-hop transmission, because the nodes are in the

same geographical area with close proximity.

Cooperation Policy: In the NUM formulations, we consider

two transmission policies: broadcast and unicast. Broadacst

can be achieved over WiFi, and more efficiently over pseudo-

broadcast as discussed in Section V, but not over Bluetooth.

Unicast can be achieved over either WiFi or Bluetooth.

Each node i ∈ N receives packets from the source or from

its neighbors, stores them in its receive queue and decodes

them if it is possible. At the same time, the received packets

are inserted in an output queue; node i maintains an output

queue for each neighboring node (i.e., j ∈ N , j 6= i). When a

transmission opportunity arises for node i (we consider stan-

dard MAC protocols, e.g., 802.11, and Bluetooth 2.1+EDR),

the node transmits a packet from an output queue to the

corresponding node. We note that a node transmits packets

that it receives from the source to all other nodes; this is

because nodes downloads different packets from the source.

However, a node does not re-transmit packets received from

other neighbors; this would be redundant since all nodes can

hear all local transmissions.

IV. OPTIMIZATION FORMULATION

In the system described in Section III, the source transmits

video with rate x. For node i ∈ N , we consider N different

rates; xi,1, xi,2, ..., xi,j , ..., xi,N where j ∈ N . The rate xi,j is

the rate of data transmitted from the source to node i to help

user j. Our goal is to maximize the utility U(x), which is a

strictly concave function of the video source rate x.

A. Formulation

1) Cooperation & Broadcast: We consider the case that

broadcast is available in the local area and that packets are

network coded (at the source/proxy and in the local area).

P1: max
x

U(x)

s.t.
∑

i∈N

xi,j − x ≥ 0, ∀j ∈ N

gi,j − xi,j ≥ 0, ∀i ∈ N , j ∈ N − {i}

xi,j ≤ Ci(1− pi), ∀i ∈ N , j ∈ N

gi,j ≤
∑

J |j∈J

fi,J , ∀i ∈ N , j ∈ N − {i}

fi,J ≤ min
j∈J

{Ci,j(1− pi,j)}τi,J , ∀i ∈ N , J ∈ H
∑

i∈N

∑

J∈H

τi,J ≤ γ (1)

The first constraint requires that the total received data by

node j should be larger than the targeted video rate. The

second constraint is the flow conservation in the local area:

the outgoing rate from node i to j, gi,j should be larger than

or equal to incoming rate xi,j . The third constraint is the

capacity constraint in the downlink. Note that the packets for

the data transmissions (i.e., with rates xi,i and xi,j ) can the

same packets. Therefore, maxj{xi,j} ≤ Ci(1−pi,j), which is

equivalent to the third constraint. fi,J in the fourth constraint

is the flow rate transmitted from node i to a set of nodes J .

If network coding is not employed in the fifth constraint,

it should be; fi,J ≤ min{Ci,j}
∏

j∈J {(1 − pi,j)}τi,J , ∀i ∈
N , J ∈ H. The reason is that transmissions should be success-

ful over all links from i to j ∈ J (it is why the product term is

used) for successful broadcast if network coding is not used.

However, when network coding is used, each transmission is

beneficial to any node that receives correctly, independently of

other transmissions. We refer to this scheme as Cooperation

& Broadcast & No-NC. The fourth constraint requires that gi,j
should be less than the total of flow rates fi,J , j ∈ J , over

all hyperarcs J that lead from i to j. The fifth constraint is

the capacity constraint in the local area, and the last constraint

is the time sharing constraint. We would like to note that the

fifth constraint assumes that network coding is employed. We

call the solution of P1 as Cooperation & Broadcast & NC.

2) Cooperation & Unicast: Let us assume that unicast

connections are used in the local area (i.e., over WiFi and

Bluetooth links). The NUM formulation is as follows;

P2: max
x

U(x)

s.t.
∑

i∈N

xi,j − x ≥ 0, ∀j ∈ N

gi,j − xi,j ≥ 0, ∀i ∈ N , j ∈ N − {i}

xi,j ≤ Ci(1− pi), ∀i ∈ N , j ∈ N

gi,j ≤ Ci,j(1− pi,j)τi,j , ∀i ∈ N , j ∈ N − {i}
∑

i∈N

∑

j∈N−{i}

τi,j ≤ γ (2)

Note that the first three constraints of Eq. (2) are the same as

Eq. (1). The fourth constraint is the capacity constraint in the

local area. The transmission rate from node i to j, i.e., gi,j



should be less than the capacity of the link and the percentage

of time that the link is used for that transmission, i.e., τi,j .

Note that the fourth constraint is correct for both WiFi and

Bluetooth. In particular for Bluetooth, the fourth constraint can

be considered as Ci,j = Cb and pi,j = pb for ∀i ∈ N , j ∈ N .

The final constraint is the time sharing constraint, i.e., time

sharing parameters τi,j should be summed up to a provisioning

factor γ. We assume that all the nodes in a cooperating group

are interfering with each other. This is expected, because all

of the nodes (i.e., smartphones) are in the same geographical

area and close to each other.

Note that, without network coding, this problem is equiv-

alent to P2 in Eq. (2). Network coding may still improve

throughput since it reduces overhead. However, we do not

consider the effect of overhead in our formulations. There-

fore, we do not consider Cooperation & Unicast & NC and

Cooperation & Unicast & No-NC separately. Instead, we refer

as Cooperation & Unicast to the solution of P2.

B. Solution

Let us first consider the solution for P1 in Eq. (1). By

relaxing the first and the second constraints in Eq. (1), we

have L(x, λ, η)

= U(x) +
∑

j∈N

λj(
∑

i∈N

xi,j − x) +
∑

i∈N

∑

j∈N−{i}

ηi,j(gi,j − xi,j)

= U(x) +
∑

i∈N

∑

j∈N

λjxi,j − x
∑

j∈N

λj +
∑

i∈N

∑

j∈N−{i}

ηi,jgi,j

−
∑

i∈N

∑

j∈N−{i}

ηi,jxi,j

= U(x)− x
∑

j∈N

λj +
∑

i∈N

∑

j∈N

xi,j(λj − ηi,j)

+
∑

i∈N

∑

j∈N

ηi,jgi,j (3)

We assume that ηi,j = 0 if i = j in the last equation. The

Lagrangian function can be decomposed into several intuitive

problems, each of which solves the optimization problem for

one variable. We provide the decomposed solution in the

following.

Queue Update at the Source:

λj(t+ 1) = {λj(t) + βt[x(t) −
∑

i∈N

xi,j(t)]}
+, ∀j ∈ N

(4)

The Lagrange multiplier λj can be considered as the queue

size for the packets that should be transmitted to node j,

because it is updated as the difference between the incoming

traffic x and the outgoing traffic
∑

i∈N xi,j . The queue λj

shall be stored at the source. In our practical implementation,

we consider that λj is stored on video proxies.

Queue Update at the Nodes:

ηi,j(t+ 1) =

{ηi,j(t) + βt[xi,j(t)− gi,j(t)]}
+, ∀i ∈ N , j ∈ N (5)

The Lagrange multipliers ηi,j can also be considered as the

queue size. ηi,j is constructed at node i for packets that should

be transmitted from node i to node j.

Source Rate Control:

x = (U ′)−1(
∑

j∈N

λj) (6)

where (U ′)−1 is the inverse of the derivative of U . Since U

is strictly concave function of x, x is inversely proportional to

the sum of the queues for all nodes in a cooperating group

according to Eq. (6). This means that the increase in the

average queue backlog is an indicator of undelivered packets

either over the downlinks or local areas, so the video rate

should be reduced.

Downlink Rate Control:

max
x

∑

i∈N

∑

j∈N

xi,j(λj − ηi,j)

s.t. xi,j ≤ Ci(1− pi), ∀i ∈ N , j ∈ N (7)

According to Eq. (7), the transmission rate xi,j is equal to

the downlink capacity Ci(1 − pi) if the difference of queue

backlogs (i.e., λj − ηi,j) is larger than zero. Otherwise, xi,j is

set to zero.

Local Area Rate Control and Scheduling: It can be

seen from Eq. (1) that the optimal value of gi,j is gi,j =∑
J |j∈J minj∈J {Ci,j(1−pi,j)}τi,J . Therefore, the local area

rate control and scheduling problem can be written as;

max
τ

∑

i∈N

∑

J∈H

τi,J (
∑

j∈J

ηi,j min
j∈J

{Ci,j(1− pi,j)})

s.t.
∑

i∈N

∑

J∈H

τi,J ≤ γ (8)

Note that Eq. (8) determines the percentage of time that a

hyperarc (i,J ) is used for transmitting packets, i.e., τi,J .

The decomposed solution of P2 in Eq. (2) exactly follows

Eq. (6) for the source rate control, Eq. (7) for the downlink rate

control, and Eq. (4) and Eq. (5) for the queue updates at the

source and local nodes, respectively. The only different part is

the local area rate control which is presented in the following.

Noting that the optimal value of gi,j is gi,j = Ci,j(1−pi,j)τi,j ;

max
τ

∑

i∈N

∑

j∈N

ηi,jCi,j(1− pi,j)τi,j

s.t.
∑

i∈N

∑

j∈N

τi,j ≤ γ (9)

Similar to Eq. (8), Eq. (9) determines the percentage of time

that a link (i, j) is used for transmitting packets, i.e., τi,j .

We provide numerical calculations for convergence in [6].

V. IMPLEMENTATION SETUP AND CHALLENGES

We are currently working on implementing this scheme on

android phones; this is work in progress and information can

be found on [7]. We use ten Google Nexus-S phones. Each

of them has a 1GHz Cortex A8 processor, 512MB of RAM,

and several network interfaces (3G, WiFi, and Bluethooth).



The operating system of these phones is Android 2.3, which

is open source. In this section, we briefly mention some of

our experience and the major challenges we faced, going from

theory to practice and we defer details to [6], [7].

Network coding on the phones turned out not to be a prob-

lem in practice. We used network coding utilities (NCUtils),

a library we have previously developed [38]. In particular,

we used the Java library containing a set of functions that

can be used to implement network coding; multiplication and

inverse is done with table lookup, addition is done with XOR.

Encoding is performed according to random network coding,

and decoding is done as early as possible. We used a symbol

of 1B, generation size of 10, and payload 1000B. Without

any optimization, this implementation of network coding on

the phone was able to support encoding and decoding rates of

6Mbps. In addition to network coding on the phones, we had

to implement a proxy, which codes the source packets before

transmitting them on the downlink.

Using multiple interfaces turned out to be a challenge,

because android phones are optimized for space and battery.

The available interfaces in the smarthpones are 3G, WiFi,

Bluetooth. Bluetooth and 3G can be simultaneously used,

and this is our canonical configuration. However, Bluetooth

and WiFi are implemented on the same chip and take turns

in using the resources, thus using them simultaneously de-

grades the performance compared to each of them used alone.

Furthermore, the android is optimized to hibernate 3G data

transmission while WiFi is used, thus preventing us from using

them simultaneously.

Broadcast was also a major challenge. In Bluetooth over

androids, broadcast is currently not supported. In WiFi, it is

possible to implement broadcast, but it is challenging. WiFi

broadcast is not the best option because it operates at low base

rate, has reliability problems, and performance problems in

congested networks. Therefore, we employ pseudo-broadcast,

where all connections are unicast but phones overhear trans-

missions in their neighborhood. Pseudo-broadcast has been

used before in the COPE testbed [30], but to the best of

our knowledge not on androids. Pseudo-broadcast is more

challenging on androids (compared to PCs) for several reasons:

the driver for overhearing is not available on all devices and

it currently does not work on ad-hoc mode. More importantly,

even when it is available, there is no API to pass overheard

packets to the application layer. We had to implement a sniffer

to provide that API and make use of the overheard packets.

Comparison to non-NC protocols. In addition to the push-

based, network coding system which is presented in this paper,

we also implemented pull-based mechanisms for network cod-

ing, as a baseline for comparison. In the pull-based schemes

nodes advertise the video segments they have, and neighbors

request some of them. There is a communication overhead

associated with those schemes, not captured by the formu-

lations in this paper. However, we found those schemes to

often achieve comparable performance to the network coding

one. This comparison strongly depends on the configuration

parameters and needs further investigation so as to make a fair

comparison considering the best version of both schemes.

NUM solution. Our current android implementation does

not implement the distributed control indicated by the NUM

solution [6]. This is part of future work [7].

VI. PERFORMANCE EVALUATION

A. Numerical Calculations

We consider the topology shown in Fig. 2 and report

from the optimal solution of the NUM problem. The source

transmits packets to smartphones via downlinks, and the

smartphones construct a cooperating group to improve their

video quality. In this section, we consider the achievable

throughput as an indicator of video quality improvement, and

we present throughput calculations. We compare our schemes;

Cooperation & Broadcast & NC, and Cooperation & Unicast

with Cooperation & Brodcast & No-NC, and No-Cooperation.

Fig. 3 shows the average throughput vs. the number of

users for the following parameters; C1 = C2 = C3 = 1,

p1 = p2 = p3 = 0, Ci,j = 1. The average throughput is

calculated as the average over all nodes in the system (we

use the same definition in the rest of the paper). One can see

that the throughput does not change with increasing number of

users for No-Cooperation scheme. This is expected, because

there is no cooperation in the local area, so the number of

users does not affect the throughput. The throughput increases

with increasing number of users, then reduces for Cooperation

& Unicast. The reason is that cooperation in the local area

helps to improve throughput. However, when the number of

users increases, the unicast transmissions share the medium,

and the throughput of each unicast transmission, hence the

overall throughput reduces. Cooperation & Broadcast & NC

and Cooperation & Broadcast & No-NC schemes achieve the

same throughput levels for Fig. 3(a) (i.e., when pi,j = 0).

Both schemes improve throughput as the number of users

increase. The reason is that since the packets are broadcast,

each transmitted packet will be beneficial to more users when

the number of users increases. Thus, the average throughput

increases. On the other hand, the average throughput of

Cooperation & Broadcast & No-NC reduces after a threshold

in Fig. 3(b) (i.e., when pi,j = 0.2). The reason is that when

network coding is not employed, each individual packet should

be successfully transmitted to all other nodes in the local area.

If it is not successfully delivered, the packet is re-transmitted

again. This reduces the average throughput. On the other hand,

Cooperation & Broadcast & NC improves throughput with

increasing number of users thanks to network coding (which

makes all packets equally beneficial).3

Fig. 4 presents the average throughput versus the second

node’s downlink capacity; C2 for the following parameters;

N = 3, C1 = C3 = 1, p1 = p2 = p3 = 0, Ci,j = 1.

We see that the average throughput of all schemes improves

with increasing C2. However, the improvement of Cooperation

3Note that the number of users in a local area is limited due to geographical
and physical constraints as shown in [37]. However, in our system model, we
already consider limited number of users, e.g., up to 5-6 users.
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Fig. 3. Throughput versus number of users. C1 = C2 = C3 = 1, p1 =

p2 = p3 = 0, Ci,j = 1.
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Fig. 4. Throughput versus C2. N = 3, C1 = C3 = 1, p1 = p2 = p3 = 0,
Ci,j = 1.
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Fig. 5. Throughput versus C2. N = 4, C1 = C3 = C4 = 1, p1 = p2 =

p3 = p4 = 0, Ci,j = 1.

& Broadcast & NC is higher as compared to other schemes

especially when there is loss in the local links. We repeat

the same calculations for N = 4 in Fig. 5. In this case,

Cooperation & Broadcast & NC improves more as compared

to N = 3, because the improvement of Cooperation &

Broadcast & NC improves with increasing number of users.

Fig. 6 shows the results for average throughput versus Ci,j

for the following parameters; (a) C2 = 0.5, C1 = C3 = 1,

p1 = p2 = p3 = 0, pi,j = 0. (b) C2 = 0.5, C1 =
C3 = C4 = 1, p1 = p2 = p3 = p4 = 0, pi,j = 0.

The average throughput of No-Cooperation scheme does not

change with Ci,j , because it does not employ cooperation

(Ci,j only affects the cooperation). The average throughput

of the other schemes improves with increasing Ci,j . This is

expected, because at higher Ci,j , more packets can be trans-

mitted among nodes, which improves the overall throughput.

Cooperation & Broadcast & NC and Cooperation & Broadcast

& No-NC improve more than Cooperation & Unicast, because
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Fig. 6. Throughput versus Ci,j . (a) C2 = 0.5, C1 = C3 = 1, p1 = p2 =

p3 = 0, pi,j = 0. (b) C2 = 0.5, C1 = C3 = C4 = 1, p1 = p2 = p3 =

p4 = 0, pi,j = 0.
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Fig. 7. Throughput versus pi,j . (a) C1 = C2 = C3 = 1, p1 = p2 = p3 =

0, Ci,j = 1. (b) C1 = C2 = C3 = C4 = 1, p1 = p2 = p3 = p4 = 0,
Ci,j = 1.

the schemes using broadcast use the wireless medium more

efficiently. Cooperation & Broadcast & NC and Cooperation

& Broadcast & No-NC show the same performance, because

there is no loss in the local area (i.e., pi,j = 0).

Fig. 7 shows the average throughput vs. the local area loss

probability (i.e., pi,j) for the following parameters; (a) C1 =
C2 = C3 = 1, p1 = p2 = p3 = 0, Ci,j = 1. (b) C1 =
C2 = C3 = C4 = 1, p1 = p2 = p3 = p4 = 0, Ci,j = 1.

Cooperation & Broadcast & NC is especially beneficial for

the range of local area loss probabilities (i.e., pi,j) from small

to high values. The gap between Cooperation & Broadcast &

NC and Cooperation & Broadcast & No-NC increases when

the number of users increases (as in Fig. 7(b) as compared

Fig. 7(a)). Also, we can see that the gap between Cooperation

& Broadcast & NC and Cooperation & Unicast increases with

increasing number of users. These show the benefit of using

network coding and broadcast.

B. Implementation Results

We present preliminary results from our implementation on

androids to demonstrate the performance of using Cooperation

& Broadcast & NC compared to all alternatives.

Experiment 1. Consider two smartphones connected to a

video source through 3G, and potentially to each other through

3G. The goal is to download a video file of 1.57MB. We

compared the following policies: (I) independent download

through 3G alone; (II) 3G and pull-based local, without net-

work coding; (III) 3G and push-based local cooperation with

network coding (using a proxy). The download time (averaged



over 5 experiments) for policies I,II, and III was 55sec, 40

sec and 32 sec, respectively. This experiment demonstrates

the value of using cooperation and network coding.

Experiment 2. Consider three smartphones. One of them,

A, has downloaded a 4.92MB mp3 file and wants to share it

with the other two phones, B and C. A establishes two UDP

unicast connections A-B, and A-C, over WiFi in managed

mode. A always sends network coded packets. There is no

communication between phones B and C. We compare two

policies: (I) no overhearing; (II) B and C can overhear packets

transmitted from A to C and B, respectively. The download

times (averaged over 5 experiments) are 56sec and 40sec,

respectively. Also notice that, because UDP connections are

used, there can be lost packets in this scenario. In case (I),

phones B and C lose 12.2 and 8.48 segments on average.

In case (I), phones B and C lose 2.5 and 0.5 segments on

average. This experiment demonstrates the feasibility value of

using (pseudo)broadcast with network coding.

These preliminary results serve as a proof-of-concept and

motivate the use of Cooperation & Broadacst & NC. Videos

demonstrating experiments 1 and 2 above can be found on the

project website [7].

VII. CONCLUSION

In this paper, we proposed a cooperative system where a

group of smartphone users, within proximity of each other,

are all interested in viewing the same video at the same time.

Our proposed scheme is grounded on a NUM formulation

and its solution, and better utilizes the cellular connections

of smartphones as well as their local (either Bluetooth or

WiFi) links by exploiting the broadcast nature of the wireless

medium and network coding to increase diversity. Numerical

calculations demonstrate the effectiveness of Cooperation &

Broadacst & NC in a range of scenarios. Preliminary results on

an android testbed confirm that and serve as proof-of-concept.

Additional materials and ongoing work on implementation can

be found at [6] and [7], respectively.
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