APPLICATION 1: NETWORK PASSIVE PERFORMANCE MEASUREMENTS & MAPS

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Throughput (MBps)</th>
<th>Existing System</th>
<th>AntMonitor System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heavy Load</td>
<td>10</td>
<td>2 MBps</td>
<td>5 MBps</td>
</tr>
<tr>
<td>Medium Load</td>
<td>5</td>
<td>1 MBps</td>
<td>3 MBps</td>
</tr>
<tr>
<td>Low Load</td>
<td>1</td>
<td>0.5 MBps</td>
<td>1.5 MBps</td>
</tr>
</tbody>
</table>

APPLICATION 2: RF HARVESTING POTENTIAL

- **Efficiency:** \(\eta = \frac{P_{\text{outage}}}{P_{\text{in}}} \)
- **Example:** \(P_{\text{in}} = 5 \) W, \(P_{\text{outage}} = 2 \) W, \(\eta = \frac{2}{5} \times 100\% = 40\% \).

RF HARVESTING OVERVIEW & SYSTEM MODEL

- **Base Station:**
 - **RF-Harvester:**
 - **Circuit:**
 - **Energy Storage/Sensor Load:**
 - **Nc(t):** Number of cells active at time \(t \).
 - **Sj(t):** Signal strength of cell \(j \) at time \(t \).
 - **l(t):** Load at time \(t \).
 - **c(t):** Channel at time \(t \).

NETWORK PERFORMANCE MONITORING APPROACHES

<table>
<thead>
<tr>
<th>Approach</th>
<th>Network Infrastructure</th>
<th>Multi-user</th>
<th>Spread-out</th>
<th>Multiplier</th>
<th>Later Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Monitoring</td>
<td>(P_{\text{in}})</td>
<td>(P_{\text{outage}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Monitoring</td>
<td>(P_{\text{in}})</td>
<td>(P_{\text{outage}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offline Analysis</td>
<td>(P_{\text{in}})</td>
<td>(P_{\text{outage}})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Performance Monitor in AntMonitor

- **AntMonitor:** [5, 6]
- **Motivations:**
 - Data Collection:
 - (a) Passively Monitor
 - (b) Packets/Hashtags + Semantics/Content
 - (c) Granularity: Per Flow, Per App.
 - (d) User Preferences
 - Deployment:
 - (a) User-Space Mobile App
 - (b) Routers in the Background
 - (c) Incentives for the users

REFERENCES

ACKNOWLEDGMENTS

This work was supported by the NSF award 1469372, a Fellowship from the Broadcom Foundation, and UCI Networked Systems Fellowships.