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Abstract— In this paper, we consider the problem of blocking
malicious traffic on the Internet, via source-based filtering. In
particular, we consider filtering via access control lists (ACLs):
these are already available at the routers today but are a
scarce resource because they are stored in the expensive ternary
content addressable memory (TCAM). Aggregation (by filtering
source prefixes instead of individual IP addresses) helps reduce
the number of filters, but comes also at the cost of blocking
legitimate traffic originating from the filtered prefixes. We show
how to optimally choose which source prefixes to filter, for a
variety of realistic attack scenarios and operators’ policies. In
each scenario, we design optimal, yet computationally efficient,
algorithms. Using logs from Dshield.org, we evaluate the
algorithms and demonstrate that they bring significant benefit
in practice.

Index Terms— Network Security, Internet, Filtering, Cluster-
ing Algorithms.

I. INTRODUCTION

How can we protect our network infrastructure from ma-
licious traffic, such as scanning, malicious code propagation,
spam, and distributed denial-of-service (DDoS) attacks? These
activities cause problems on a regular basis, ranging from
simple annoyance to severe financial, operational and political
damage to companies, organizations and critical infrastructure.
In recent years, they have increased in volume, sophistication,
and automation, largely enabled by botnets, which are used as
the platform for launching these attacks.

Protecting a victim (host or network) from malicious traffic
is a hard problem that requires the coordination of sev-
eral complementary components, including non-technical (e.g.,
business and legal) and technical solutions (at the application
and/or network level). Filtering support from the network is
a fundamental building block in this effort. For example, an
Internet service provider (ISP) may use filtering in response
to an ongoing DDoS attack, to block the DDoS traffic before
it reaches its clients. Another ISP may want to proactively
identify and block traffic carrying malicious code before it
reaches and compromises vulnerable hosts in the first place.
In either case, filtering is a necessary operation that must be
performed within the network.

Filtering capabilities are already available at routers today
via access control lists (ACLs). ACLs enable a router to match
a packet header against pre-defined rules and take pre-defined
actions on the matching packets [1], and they are currently
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used for enforcing a variety of policies, including infrastruc-
ture protection [2]. For the purpose of blocking malicious
traffic, a filter is a simple ACL rule that denies access to
a source IP address or prefix. To keep up with the high
forwarding rates of modern routers, filtering is implemented
in hardware: ACLs are typically stored in ternary content
addressable memory (TCAM), which allows for parallel access
and reduces the number of lookups per forwarded packet.
However, TCAM is more expensive and consumes more space
and power than conventional memory. The size and cost of
TCAM puts a limit on the number of filters, and this is not
expected to change in the near future.1 With thousands or tens
of thousands of filters per path, an ISP alone cannot hope to
block the currently witnessed attacks, not to mention attacks
from multimillion-node botnets expected in the near future.

Consider the example shown in Fig.1(a): an attacker com-
mands a large number of compromised hosts to send traffic to
a victim V (say a webserver), thus exhausting the resources
of V and preventing it from serving its legitimate clients. The
ISP of V tries to protect its client by blocking the attack at
the gateway router G. Ideally, G should install one separate
filter to block traffic from each attack source. However, there
are typically fewer filters than attack sources, hence aggre-
gation is used, i.e., a single filter (ACL) is used to block an
entire source address prefix. This has the desired effect of
reducing the number of filters necessary to block all attack
traffic, but also the undesired effect of blocking legitimate
traffic originating from the blocked prefixes (we will call the
damage that results from blocking legitimate traffic “collateral
damage”). Therefore, filter selection can be viewed as an
optimization problem that tries to block as many attack sources
with as little collateral damage as possible, given a limited
number of filters. Furthermore, several measurement studies
have demonstrated that malicious sources exhibit temporal and
spatial clustering [3]–[9], a feature that can be exploited by
prefix-based filtering.

In this paper, we formulate a general framework for studying
source prefix filtering as a resource allocation problem. To the
best of our knowledge, optimal filter selection has not been
explored so far, as most related work on filtering has focused
on protocol and architectural aspects. Within this framework,
we formulate and solve five practical source-address filtering
problems, depending on the attack scenario and the operator’s

1A router linecard or supervisor-engine card typically supports a single
TCAM chip with tens of thousands of entries. For example, the Cisco Catalyst
4500, a mid-range switch, provides a 64,000-entry TCAM to be shared among
all its interfaces (48- 384). Cisco 12000, a high-end router used at the Internet
core, provides 20,000 entries that operate at line-speed per linecard (up to
4 Gigabit Ethernet interfaces). The Catalyst 6500 switch can fit 16K-32K
patterns and 2K-4K masks in the TCAM. Depending on how an ISP connects
to its clients, each individual client can typically use only part of these ACLs,
i.e., a few hundreds to a few thousands filters.
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Fig. 1. Example of a distributed attack. Let’s assume that the gateway router G has only two filters, F1 and F2, available to block malicious traffic and
protect the victim V . It uses F1 to block a single malicious source address (A) and F2 to block the entire source prefix a.b.c.∗, which contains 3 malicious
sources but also one legitimate source (B). Therefore, the selection of filter F2 trades-off collateral damage (blocking B) for reduction in the number of filters
(from 3 to 1). We note that both filters, F1 and F2, are ACLs installed at the same router G.

policy and constraints. Our contributions are twofold. On the
theoretical side, filter selection optimization leads to novel
variations of the multidimensional knapsack problem. We ex-
ploit the special structure of each problem, and design optimal
and computationally efficient algorithms. On the practical side,
we provide a set of cost-efficient algorithms that can be used
both by operators to block undesired traffic and by router
manufacturers to optimize the use of TCAM and eventually
the cost of routers. We use logs from Dshield.org to
demonstrate that optimally selecting which source prefixes to
filter brings significant benefits compared to non-optimized
filtering or to generic clustering algorithms.

The outline of the rest of the paper is as follows. In Section
II, we formulate the general framework for optimal source
prefix filtering. In Section III, we study five specific problems
that correspond to different attack scenarios and operator
policies: blocking all addresses in a blacklist (BLOCK-ALL);
blocking some addresses in a blacklist (BLOCK-SOME);
blocking all/some addresses in a time-varying blacklist (TIME-
VARYING BLOCK-ALL/SOME); blocking flows during a
DDoS flooding attack to meet bandwidth constraints (FLOOD-
ING); and distributed filtering across several routers during
flooding (DIST-FLOODING). For each problem, we design
an optimal, yet computationally efficient, algorithm to solve
it. In Section IV, we use data from Dshield.org [10]
to evaluate the performance of our algorithms in realistic
attack scenarios and we demonstrate that they bring significant
benefit in practice. Section V discusses related work and puts
our work in perspective. Section VI concludes the paper.

II. PROBLEM FORMULATION AND FRAMEWORK

A. Terminology and Notation

Table I summarizes our terminology and notation.
Source IP Addresses and Prefixes: Every IPv4 address ip

is a 32-bit sequence. We use standard IP/mask notation, i.e.,
we write p/l to indicate a prefix p of length l bits, where p
and l can take values l = 0, 1, ..., 32 and p = 0, 1, ..., 2l − 1,
respectively. For brevity, when the meaning is obvious from
the context, we simply write p to indicate prefix p/l. We

write ip ∈ p/l to indicate that address ip is within the 232−l

addresses covered by prefix p/l.

Blacklists and Whitelists: A blacklist (BL) is a set of unique
source IP addresses that send bad (undesired) traffic to the
victim. Similarly, a whitelist (WL) is a set of unique source
IP addresses that send good (legitimate) traffic to the victim.
An address may belong either to a blacklist (in which case
we call it a “bad” address) or a to whitelist (in which case
we call it a “good” address), but not to both. We use |BL|
and |WL| to indicate the number of addresses in BL and
WL, respectively. For brevity, we also use N = |BL| for the
number of addresses in the blacklist, which is the size of the
most important input to our problem.

Each address ip in a blacklist or a whitelist is assigned a
weight wip, indicating its importance. If ip is a bad address,
we assign it a negative weight wip ≤ 0, which indicates the
benefit from blocking ip; if ip is a good address, we assign
it a positive weight wip ≥ 0, which indicates the damage
from blocking ip. The higher the absolute value of the weight,
the higher the benefit or damage and thus the preference to
block the address or not. The weight wip can have a different
interpretation depending on the filtering problem. For instance,
it can represent the amount of bad/good traffic originating from
the corresponding source address, or it can express policy:
depending on the amount of money gained/lost by the ISP
when blocking source address ip, an ISP operator can assign
large positive weights to its important customers that should
never be blocked, or large negative weights to the worst attack
sources that must definitely be blocked.

Creating blacklists and whitelists (i.e., identifying bad and
good addresses and assigning appropriate weights to them) is
a difficult problem on its own right, but orthogonal to this
work. We assume that the blacklist BL is provided by another
module (e.g., an intrusion detection system or historical data)
as input to our problem. The sources of legitimate traffic are
also assumed known: e.g., web servers or ISPs typically keep
historical data and know their customers. If it is not explicitly
given, we take a conservative approach and define the whitelist
WL to include all addresses that are not in BL.
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Filters: We focus on filtering of source address prefixes. In
our context, a filter is an ACL rule that specifies that all packets
with a source IP address in prefix p/l should be blocked. Fmax
is the maximum number of available filters, and it is given as
input to our problem. Filter optimization is meaningful only
when Fmax is much smaller than the size of the blacklist N =
|BL|; otherwise the optimal would be to block every single
bad address. Fmax << N is indeed the case in practice due
to the size and cost of the TCAM, as mentioned in Section I.

The decision variable xp/l ∈ {1, 0} is 1 if a filter
is assigned to block prefix p/l; or 0 otherwise. A fil-
ter p/l blocks all 232−l addresses in that range. Hence,
bp/l = |

∑
ip∈p/l∩BL wip| expresses the benefit from filter

p/l, whereas gp/l =
∑
ip∈p/l∩WL wip expresses the collateral

damage it causes. An effective filter should have a large benefit
bp/l and low collateral damage gp/l.

Filtering Benefit and Collateral Damage: We define the
filtering benefit as

∑
p/l

∑
ip∈p/l∩BL wip · xp/l, i.e., the sum

of the weights of the bad addresses whose traffic is blocked.
We define the collateral damage of a filtering solution as∑
p/l

∑
ip∈p/l∩WL wip · xp/l, i.e., the sum of the weights of

the good addresses whose traffic is blocked.

B. Rationale and Overview of Filtering Problems

Given a set of bad and a set of good source addresses
(BL and WL), a measure of their importance (the address
weights w), and a resource budget (Fmax plus, possibly, other
resources, depending on the particular problem), the goal is
to select which source prefixes to filter so as to minimize the
impact of bad traffic and can be accommodated with the given
resource budget. Different variations of the problem can be
formulated, depending on the attack scenario and the victim
network’s policies and constraints: the network operator may
want to block all bad addresses or tolerate to leave some
unblocked; the attack may be of low rate or a flooding attack;
filters may be installed at one or several routers. At the core
of each filtering problem lies the following optimization.

min
∑
p/l

∑
ip∈p/l

wipxp/l (1)

s.t.
∑
p/l

xp/l ≤ Fmax (2)

∑
p/l:ip∈p/l

xp/l ≤ 1 ∀ip ∈ BL (3)

xp/l ∈ {0, 1} ∀l = 0, ..., 32, p = 0, ..., 2l (4)

Eq. (1) expresses the objective to minimize the total cost of
bad traffic, which consists of two parts: the collateral damage
(the terms with wip > 0) and the cost of leaving bad traffic
unblocked (the terms with wip < 0). We use notation

∑
p/l to

denote summation over all possible prefixes p/l: l = 0, ..., 32,
p = 0, ..., 2l − 1. Eq. (2) expresses the constraint on the
number of filters. Eq. (3) states that overlapping filters are
mutually exclusive, i.e., each bad address can be blocked at
most once, otherwise filtering resources are wasted. Eq. (4)
lists the decision variables xp/l corresponding to all possible
prefixes, and will be omitted from now on for brevity.

ip Generic IP address
wip Weight assigned to address ip
BL Blacklist: a list of bad addresses

N = |BL| Number of unique addresses in BL
WL Whitelist: a set of “good” addresses

p/l (or “p” for short) Prefix p of length l bits (IP/mask notation)
ip ∈ p/l IP address that belongs to prefix p/l

xp/l ∈ {1, 0} Indicates if a filter blocks prefix p/l or not
gp/l =

∑
ip∈p/l∩WL wip Collateral damage from filtering prefix p/l

bp/l = |
∑

ip∈p/l∩BL wip| Bad traffic blocked by filtering prefix p/l

Fmax (<< N) Maximum number of available filters
zp(F ) Value of the optimal solution of subproblem

that considers only addresses in prefix p
and up to F filters

Xp(F ) Set of filters used in optimal solution zp(F )

TABLE I
SUMMARY OF NOTATION AND TERMINOLOGY

Eq. (1)–(4) provide the general framework for filter-
selection optimization. Different filtering problems can be
written as special cases, possibly with additional constraints.
As we discuss in Section V, these are all multi-dimensional
knapsack problems [11], which are, in general, NP-hard. The
specifics of each problem affect dramatically the complexity,
which can vary from linear to NP-hard.

In this paper, we formulate five practical filtering problems
and develop optimal, yet computationally efficient algorithms
to solve them. Here, we summarize the rationale behind each
problem and we outline our main results; the exact formulation
and detailed solution is provided in Section III.

BLOCK-ALL: Suppose a network operator has a blacklist
BL of size N , a whitelist WL, and a weight assigned to each
address that indicates the amount of traffic originating from
that address. The total number of available filters is Fmax. The
first practical goal the operator may have is to install a set of
filters that block all bad traffic so as to minimize the amount
of good traffic that is blocked. We design an optimal algorithm
that solves this problem at the lowest achievable complexity
(linearly increasing with N ).

BLOCK-SOME: A blacklist and a whitelist are given, as
before, but the operator is now willing to block only some,
instead of all, bad traffic, so as to decrease the amount of
good traffic blocked at the expense of leaving some bad traffic
unblocked. The goal now is to block only those prefixes
that have the highest impact and do not contain sources that
generate a lot of good traffic, so as to minimize the total cost
in Eq. (1). We design an optimal, lowest-complexity (linearly
increasing with N ) algorithm for this problem, as well.

TIME-VARYING BLOCK-ALL/SOME: Bad addresses
may change over time [4]: new sources may send malicious
traffic and conversely, previously active sources may disappear
(e.g., when their vulnerabilities are patched). One way to
solve the dynamic versions of BLOCK-ALL (SOME) is to
run the algorithms we propose for the static versions for the
blacklist/whitelist pair at each time slot. However, given that
subsequent blacklists typically exhibit significant overlap [4],
it may be more efficient to exploit this temporal correlation
and incrementally update the filtering rules. We show that is it
possible to update the optimal solution, as new IPs are inserted
in or removed from the blacklist, in logN time.
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FLOODING: In a flooding attack, such as the one shown
in Fig.1, a large number of compromised hosts send traffic to
the victim and exhaust the victim’s access bandwidth. In this
case, our framework can be used to select the filtering rules
that minimize the amount of good traffic that is blocked while
meeting the access bandwidth constraint – in particular, the
total bandwidth consumed by the unblocked traffic should not
exceed the bandwidth of the flooded link, e.g., link G-V in
Fig. 1. We prove that this problem is NP-hard and we design
a pseudo-polynomial algorithm that solves it optimally, with
complexity that grows linearly with the blacklist and whitelist
size, i.e., |BL|+ |WL|.

DIST-FLOODING: All the above problems aim at in-
stalling filters at a single router. However, a network operator
may use the filtering resources collaboratively across several
routers to better defend against an attack. Distributed filtering
may also be enabled by the cooperation across several ISPs
against a common enemy. The question in both cases is not
only which prefixes to block, but also at which router to
install the filters. We study the practical problem of distributed
filtering against a flooding attack. We prove that the problem
can be decomposed into several FLOODING problems, which
can be solved in a distributed way.

III. FILTERING PROBLEMS AND ALGORITHMS

In this section, we provide the detailed formulation of each
problem and we present the algorithm that solves it. We start
by defining the data structure that we use to represent the
problem and to develop our algorithms.

A. A Data Structure for Representing Filtering Solutions

Definition 1 (LCP Tree): Given a set of addresses A, we
define the Longest Common Prefix tree of A, denoted by LCP-
tree(A), as the binary tree with the following properties: (i)
each leaf represents a different address in A and there is a leaf
for each address in A; (ii) each intermediate (non-leaf) node
represents the longest common prefix between the prefixes
represented by its two children.

The LCP-tree(A) can be constructed from the complete
binary tree (with root leaves at level 32 corresponding to
all addresses [0, ...., 232 − 1], and intermediate nodes at level
i = 1, ..32 corresponding to all prefixes of length i) by
removing the branches that do not have addresses in A, and
then by removing nodes with a single child. It is a variation
of the binary (or unibit) trie [12], but does not have nodes
with a single child. The LCP-tree(A) offers an intuitive way
to represent sets of prefixes that can block the addresses in
set A: each node in the LCP tree represents a prefix that can
be blocked, hence we can represent a filtering solution as the
pruned version of the LCP tree, whose leaves are all and only
the blocked prefixes.

Example 1: For instance, consider the LCP tree depicted in
Figure 2, whose leaves correspond to bad addresses that we
want to block. One (expensive) solution is to use one filter to
block each bad address; thus the LCP tree is not pruned and
its leaves correspond to the filters. Another feasible solution
is to use three filters and block traffic from prefixes 0/1, 8/2,

Fig. 2. Example of LCP-tree(BL). Consider a blacklist
consisting of the following 9 bad addresses: BL =
{10.0.0.1, 10.0.0.3, 10.0.0.4, 10.0.0.5, 10.0.0.7, 10.0.0.8, 10.0.0.10,
10.0.0.11, 10.0.0.12}. All remaining addresses are considered good.
Each leaf represents one address in the BL. Each intermediate node
represents the longest common prefix p covering all bad addresses
in that subtree. At each intermediate node p, we also show the
collateral damage (i.e., number of good addresses blocked) when we
filter prefix p instead of filtering each of its children. E.g., if we use
two filters to block bad addresses 10.0.0.5/32 and 10.0.0.7/32 the
collateral damage is 0; if, instead, we use one filter to block prefix
10.0.0.4/30, we also block good address 10.0.0.6/32, i.e., we cause
collateral damage 1.

and 12/4; this can be represented by the pruned version of the
LCP tree that includes the aforementioned prefixes as leaves.
Yet another (rather radical) solution is to filter a single prefix
(0/0) to block all traffic; this can be represented by the pruned
version of the LCP tree that includes only its root.
.

Complexity: Given a list of addresses A, we can build
the LCP-tree(A) by performing |A| insertions in a Patricia
trie [12]. To insert a string of m bits, we need at most m
comparisons. Thus, the worst-case complexity is O(m|A|),
where m = 32 (bits) is the length of a 32-bit IPv4 address.

B. BLOCK-ALL

Problem Statement: Given: a blacklist BL, a whitelistWL,
and the number of available filters Fmax; select filters that
block all bad traffic and minimize collateral damage.

Formulation: We formulate this problem by making two
adjustments to the general framework of Eq. (1)–(4). First,
Eq. (1) becomes Eq. (5) below, which expresses the goal to
minimize the collateral damage. Second, Eq. (3) becomes Eq.
(7) below, which enforces the constraint that every bad address
should be blocked by exactly one filter, as opposed to at most
one filter in Eq.(3).

min
∑
p/l

gp/lxp/l (5)

s.t.
∑
p/l

xp/l ≤ Fmax (6)

∑
p/l:ip∈p/l

xp/l = 1 ∀ip ∈ BL (7)

Characterizing an Optimal Solution: Our algorithm starts
from LCP-tree(BL) and outputs a pruned version of that LCP
tree. Hence, we start by proving that an optimal solution to
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BLOCK-ALL can indeed be represented as a pruned version
of that LCP tree.

Proposition 3.1: An optimal solution to BLOCK-ALL can
be represented as a pruned subtree of LCP-tree(BL) with the
same root as LCP-tree(BL), up to Fmax leaves, and each non-
leaf node having exactly two children.

Proof: We prove that, for each feasible solution to
BLOCK-ALL S, there exists another feasible solution S′ that
(i) can be represented as a pruned subtree of LCP-tree(BL) as
described in the proposition and (ii) whose collateral damage
is smaller or equal to S’s. This is sufficient to prove the
proposition, since an optimal solution is also a feasible one.

Any filtering solution can be represented as a pruned
subtree of the full binary tree of all IP addresses (LCP-
tree
(
{0, 1, ..., 232 − 1}

)
) with the same root and leaves cor-

responding to the filtered prefixes. S is a feasible solution to
BLOCK-ALL, therefore S uses up to Fmax filters, i.e., its tree
has up to Fmax leaves. Indeed, if this was not the case, Eq. (6)
would be violated and S would not be a feasible solution.

Let us assume that the tree representing S includes a prefix
p̃ that is not in LCP-tree(BL). There are three possible cases:

1) p̃ includes no bad addresses. In this case, we can simply
remove p̃ from S’s tree (i.e., unblock p̃).

2) Only one of p̃’s children includes bad addresses. In this
case, we can replace p̃ with the child node.

3) Both of p̃’s children contain bad addresses. In this case, p̃
is already the longest common prefix of all bad addresses
in BL ∩ p̃, thus already on the LCP-tree(BL).

Clearly, each of these operations transforms feasible solution
S, which is assumed not to be on LCP-tree(BL), into another
feasible solution S′ with smaller or equal collateral damage
but on the LCP-Tree(BL). We can repeat this process for all
prefixes that are in S’s tree but not in LCP-tree(BL), until we
create a feasible solution S′ that includes only prefixes from
LCP-tree(BL) and has smaller or equal collateral damage.

The only element missing to prove the proposition is to
show that, in the pruned LCP subtree that represents S′, each
non-leaf node has exactly two children. We show this by
contradiction: Suppose there exists a non-leaf node in our
pruned LCP subtree that has exactly one child. This can only
result from pruning out one child of a node in the LCP tree.
This means that all the bad addresses (leaves) in the subtree
of this child node remain unfiltered, which violates Eq. (7);
but this is a contradiction because S′ is a feasible solution.

Algorithm: Algorithm 1, which solves BLOCK-ALL, con-
sists of two steps. First, we build the LCP tree from the input
blacklist BL. Second, in a bottom-up fashion, we compute
zp(F ) ∀p, F , i.e., the minimum collateral damage needed to
block all bad addresses in the subtree of prefix p using at most
F filters. Following a dynamic programming (DP) approach,
we can find the optimal allocation of filters in the subtree
rooted at prefix p, by finding a value n and assigning F − n
filters to the left subtree and n to the right subtree, so as to
minimize collateral damage. The fact that BLOCK-ALL needs
to filter all bad addresses (leaves in the LCP tree) implies that
at least one filter must be assigned to the left and right subtree,
i.e., n = 1, 2, ..., F−1. In other words, for every pair of sibling

Algorithm 1 Algorithm forsolving BLOCK-ALL
1: build LCP-tree(BL)
2: for all leaf nodes leaf do
3: zleaf (F ) = 0 ∀F ∈ [1, Fmax]
4: Xleaf (F ) = {leaf} ∀F ∈ [1, Fmax]
5: end for
6: level = level(leaf)-1
7: while level ≥ level(root) do
8: for all node p such that level(p) == level do
9: zp(1) = gp

10: Xp(1) = {p}
11: zp(F ) = minn=1,..F−1

{
zsl (F − n) + zsr (n)

}
∀F ∈

[2, Fmax]
12: Xp(F ) = Xsl (F − n) ∪Xsr (n)∀F ∈ [2, Fmax]
13: end for
14: level = level - 1
15: end while
16: return zroot(Fmax), Xroot(Fmax)

nodes, sl (left) and sr (right), with common parent node p,
the following recursive equation holds:

zp(F ) = min
n=1,...,F−1

{
zsl(F − n) + zsr (n)

}
, F > 1 (8)

with boundary conditions for leaf and intermediate nodes:

zleaf (F ) = 0 ∀F ≥ 1 (9)
zp(1) = gp ∀p (10)

Once we compute zp(F ) for all prefixes in the LCP tree, we
simply read the value of the optimal solution, zroot(Fmax).
We also use auxiliary variables Xp(F ) to keep track of the
set of prefixes used in the optimal solution. In lines 4 and 10
of Algorithm 1, Xp(F ) is initialized to the single prefix used.
In line 12, after computing the new cost, the corresponding
set of prefixes is updated: Xp(F ) = Xsl(F − n) ∪Xsr (n).

Theorem 3.2: Algorithm 1 computes the optimal solution
of problem BLOCK-ALL: the prefixes that are contained in
set Xp(F ) are the optimal xp/l = 1 for Eq. (5)–(7).

Proof: Recall that, zroot(Fmax) denotes the value of the
optimal solution of BLOCK-ALL with Fmax filters (i.e., the
minimum collateral damage), while Xroot(Fmax) denotes the
set of filters selected in the optimal solution. Let sl and sr
denote the two children nodes (prefixes) of root in the LCP-
tree(BL). Finding the optimal allocation of Fmax > 1 filters to
block all addresses contained in root (possibly all IP space), is
equivalent to finding the optimal allocation of x ≥ 1 filters to
block all addresses in sl, and y ≥ 1 prefixes for bad addresses
in sr, such that x + y = Fmax. This is because prefixes sl,
and sr jointly contain all bad addresses. Moreover, each of sl
and sr contains at least one bad address. Thus, at least one
filter must be assigned to each of them. If Fmax = 1, i.e.,
there is only one filter available, the only feasible solution is
to select root as the prefix to filter out. The same argument
recursively applies to descendant nodes, until either we reach
a leaf node, or we have only one filter available. In these cases,
the problem is trivially solved by Eq. (9).

Complexity: The LCP-tree is a binary tree with |BL|
leaves; therefore, it has O(|BL|) intermediate nodes (prefixes).
Computing Eq. (8) for every node p and for every value F ∈
[1, Fmax − 1] involves solving O(|BL|Fmax) sub-problems,
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one for every pair (p, F ) with complexity O(Fmax). zp(F ) in
Eq. (8) requires only the optimal solution at the sibling nodes,
z(sl, F −n), z(sr, n). Thus, proceeding from the leaves to the
root, we can compute the optimal solution in O(|BL|F 2

max).
In practice, the complexity is even lower, since we do not
need to compute zp(F ) for all values F ≤ Fmax, but only
for F ≤ min{|leaves(p)|, Fmax}, where |leaves(p)| is the
number of the leaves in prefix p in the LCP tree. Moreover, we
only need to compute entries zp(F ) for every prefix p, s.t. we
cover all addresses in BL ∩ p, which may require F ≤ Fmax
for long prefixes in the LCP-tree.

Finally, we observe that the asymptotic complexity is
O(|BL|), since Fmax << N = |BL| and Fmax does not
depend on |BL| but only on the TCAM size. Thus, the
time complexity increases linearly with the number of bad
addresses |BL|. This is within a constant factor of the lowest
achievable complexity, since we need to read all |BL| bad
addresses at least once. Although the above is a worst-case
analysis, we confirmed in simulation that the computation time
in practice is very close to that.

C. BLOCK-SOME

Problem Statement: Given a blacklist BL, a whitelist WL,
and the number of available filters Fmax, the goal is to select
filters so as to minimize the total cost of the attack.

Formulation: This is precisely the problem described by
Eq. (1)–(4), but put slightly rephrased to better compare it
with BLOCK-ALL. There are two differences from BLOCK-
ALL. First, the goal is to minimize the total cost of the attack,
which involves both collateral damage gp/l and the filtering
benefit bp/l, which is expressed by Eq. (11). Second, Eq. (13)
states that every bad address must be filtered by at most one
prefix, which means that it may or may not be filtered.

min
∑
p/l

(
gp/l − bp/l

)
xp/l (11)

s.t.
∑
p/l

xp/l ≤ Fmax (12)

∑
p/l:ip∈p/l

xp/l ≤ 1 ∀ip ∈ BL (13)

Characterizing an Optimal Solution: As with BLOCK-
ALL, our algorithm starts from LCP-tree(BL) and outputs a
pruned version of that LCP tree. The only difference is that
some bad addresses may now remain unfiltered. In the pruned
LCP subtree that represents our solution, this means that there
may exist intermediate (non-leaf) nodes with a single child.

Proposition 3.3: An optimal solution to BLOCK-SOME
can be represented as a pruned subtree of LCP-tree(BL) with:
the same root as LCP-tree(BL) and up to Fmax leaves.

Proof: In Proposition 3.1, we proved that any solution of
Eq. (5)–(6) can be reduced to a (pruned) subtree of the LCP
tree with at most Fmax leaves. Moreover, the constraint ex-
pressed by Eq. (13), which imposes the use of non-overlapping
prefixes, is automatically imposed considering the leaves of
the pruned subtree as the selected filter. This proves that any
feasible solution of BLOCK-SOME can be represented as a

pruned subtree of the LCP tree with at most Fmax leaves, and
thus, so can an optimal solution.

Algorithm: The algorithm that solves BLOCK-SOME is
similar to Algorithm 1 in that it relies on the LCP tree and a
dynamic programming (DP) approach. The main difference is
that not all bad addresses need to be filtered. Hence, at each
step, we can assign n = 0 filters to the left and/or right subtree,
whereas in line (11) of Algorithm 1 we had n = 1, ..., F − 1,
now we have n = 0, 1, ..., F . We can recursively compute the
optimal solution as before:

zp(F ) = min
n=0,...,F

{
zsl(F − n) + zsr (n)

}
(14)

with boundary conditions

zp(0) = 0 ∀ p (15)

zp(1) = min
{
gp − bp, min

n=0,1

{
zsl(1− n) + zsr (n)

}}
(16)

zleaf (F ) = −bleaf ∀F ≥ 1 (17)

where p is an intermediate node (prefix) and leaf is a leaf
node in the LCP-tree.

Complexity: The analysis of Algorithm 1 applies to this
algorithm as well. The complexity is the same, i.e., linearly
increasing with |BL|.

BLOCK-ALL vs. BLOCK-SOME: There is an interesting
connection between the two problems. The latter can be
regarded as an automatic way to select the best subset from
BL and run BLOCK-ALL only on that subset. If the absolute
value of weights of bad addresses are significantly larger
than the weights of the good addresses, then BLOCK-SOME
degenerates to BLOCK-ALL.

D. TIME-VARYING BLOCK-ALL(SOME)

We now consider the case when the blacklist and whitelist
change over time and we seek to incrementally update the
filtered prefixes that are affected by the change. More pre-
cisely, consider a sequence of blacklists, {BLτ0 ,BLτ1 , . . .}
and of whitelists, {WLτ0 ,WLτ1 , . . .} at times τ0, τ1, . . .,
respectively.

Problem Statement: Given: (i) a blacklist and whitelist,
BLτi−1

andWLτi−1
, (ii) the number of available filters Fmax,

(iii) the corresponding solution to BLOCK-ALL(SOME), de-
noted Sτi−1 , and (iv) another blacklist and whitelist, BLτi and
WLτi ; obtain the solution to BLOCK-ALL(SOME) for the
second blacklist/whitelist, denoted Sτi .

Algorithm: Consider, for the moment, that the whitelist
remains the same and assume the focus is on the changes
in the blacklist.

(i) Addition. First, consider that the two blacklists differ
only in a single new bad address, which does not appear in
BLτi−1

, but appears in BLτi . There are two cases, depending
on whether the new bad address belongs to a prefix that is
already filtered in Sτi−1 . If it is, no further action is needed,
and Sτi = Sτi−1 . Otherwise, we modify the LCP tree that
represents Sτi−1

to also include the new bad address, as
illustrated in Fig. 3. The key point is that we only need to add
one new intermediate node to the LCP tree (the gray node in
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Fig. 3. Example of (i) BLOCK-ALL and (ii) TIME-VARYING
BLOCK-ALL. Consider a blacklist of 10 bad IP addresses BL =
{10.0.0.3, 10.0.0.10, 10.0.0.15, 10.0.0.17, 10.0.0.22, 10.0.0.31, 10.0.0.32,
10.0.0.33, 10.0.0.57, 10.0.0.58} The table next to each node p shows the
minimum cost zp(F ) computed by the DP algorithm for BLOCK-ALL for
F = 1, ...number of leaves in subtree. The optimal solution to BLOCK-ALL
consists of the 4 prefixes highlighted in black. When a new address, e.g.,
10.0.0.37, is added to the blacklist, a leaf node is added to the tree
and TIME-VARYING needs to update all and only the ancestor nodes
in LCP-tree(BL), indicated by the dashed lines, according to Eq. (8).
Moreover, a new node is created to denote the longest common prefix
between 10.0.0.37 and 10.0.0.32 (or 10.0.0.33). Note that all other nodes
corresponding to the longest common prefixes between 10.0.0.37 and other
addresses in BL are already in the LCP tree. The new optimal solution
consists of the 4 prefixes indicated by the dashed circles.

Fig. 3), corresponding to the longest common prefix between
the new bad address and its closest bad address that is already
in the LCP tree. The optimal allocation of F filters to the
subtree rooted at prefix p depends only on how these F filters
are allocated to the children of p. Hence, when we add a new
node to the LCP tree, we need to recompute the optimal filter
allocation (i.e., recompute zp(F ) and Xp(F ) ∀F , according
to Eq. (8)) for all and only the ancestors of the new node, all
the way up to the root node.

(ii) Deletion. Then assume that two blacklists differ in one
deleted bad address, which appears in BLτi−1

but not in BLτi .
In this case, we modify the LCP tree that represents Sτi−1

to we remove the leaf node that corresponds to that address
as well as its parent node (since that node does not have
two children any more), and we recompute the optimal filter
allocation for all and only the node’s ancestors.

(iii) Adjustment. Finally, suppose that the two blacklists
differ in one address, which appears in both blacklists but with
different weights; or, that the two blacklists are the same, while
the two whitelists differ in one address (it either appears in
one of the two whitelists or it appears in both whitelists but
with different weights). In all of these cases, we do not need to
add or remove any nodes from the LCP tree, but we do need
to adjust the collateral damage or filtering benefit associated
with one node, hence recompute the optimal filter allocation
for all and only that node’s ancestors.

(iv) Multiple addresses. If the two successive time instances
differ in multiple addresses, we repeat the procedures de-
scribed above as needed, i.e., we perform one node addition
for each new bad address, one deletion for each removed bad

address, and up to one adjustment for each other difference.
Complexity: Since the LCP tree is a complete binary

tree, any leaf node has at most log(|BL|) ancestors, so,
inserting a new bad address (or removing one) requires
O(log(|BL|)F 2

max) operations. Hence, deriving Sτi from
Sτi−1 as described above is asymptotically better than com-
puting it from scratch using Algorithm 1. if and only if the
number of different addresses between the two time instances
is less than |BL|

log |BL| .

E. FLOODING

Problem Statement: Given: (i) a blacklist BL and a whitelist
WL, where the absolute weight of each bad and good address
is equal to the amount of traffic it generates, (ii) the number
of available filters Fmax, and (iii) a constraint on the victim’s
link capacity (bandwidth) C; select filters so as to minimize
collateral damage and make the total traffic fit within the
victim’s link capacity.

Formulation: To formulate this problem, we need to make
two adjustments to the general framework of Eq. (1)–(4).
First, Eq. (1) becomes Eq. (18), which expresses the goal
to minimize collateral damage. Second, we add a new con-
straint Eq. (20), which specifies that the total traffic that
remains unblocked after filtering (which is the total traffic,
T0 =

∑
ip∈BL∪WL wip, minus the traffic that gets blocked,∑

p/l

(
gp/l + bp/l

)
xp/l should fit within the link capacity C,

so as to avoid congestion and packet loss.

min
∑
p/l

gp/lxp/l (18)

s.t.
∑
p/l

xp/l ≤ Fmax (19)

T0 −
∑
p/l

(
gp/l + bp/l

)
xp/l ≤ C (20)

∑
p/l:ip∈p/l

xp/l ≤ 1 ∀ip ∈ BL (21)

Characterizing an Optimal Solution: We represent the opti-
mal solution as a pruned subtree of an LCP-tree. However, we
start with the full binary tree of all bad and good addresses
LCP-tree(BL ∪ WL). Moreover, to handle the constraint in
Eq. (20), each node corresponding to prefix p is assigned an
additional cost, Tp, indicating the total amount of traffic sent
by p, Tp = gp + bp.

Proposition 3.4: An optimal solution of FLOODING can
be represented as the leaves of a pruned subtree of LCP-
tree(BL ∪WL), with the same root, up to Fmax leaves, and
the total cost of the leaves ≥ T0 − C.

Proof: Similarly to Proposition 3.1, we prove that for
every feasible solution to FLOODING S, there exists another
feasible solution S′, which (i) can be represented as a pruned
subtree of LCP-tree(BL∪WL) as described in the proposition
and (ii) whose collateral damage is smaller or equal to S’s.
This is sufficient to prove the proposition, since an optimal
solution is also a feasible one.

Any filtering solution can be represented as a pruned subtree
of LCP-tree

(
{0, 1, ..., 232 − 1}

)
with the same root and leaves
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corresponding to the filtered prefixes. S is a feasible solution
to FLOODING, therefore: S’s tree has up to Fmax leaves,
otherwise Eq. (19) would be violated; and the total cost of
S’s leaves is ≥ T0−C, otherwise Eq. (20) would be violated.

Suppose that S includes a prefix p̃ that is not in LCP-
tree(BL ∪ WL). We can construct a better feasible solution
S′, which can be represented as a pruned subtree of LCP-
tree(BL∪WL): S′ has the same root, up to Fmax leaves and
total cost of the leaves ≥ T0−C. There are three possibilities:

1) p̃ includes neither bad nor good addresses. In this case,
we can simply remove p̃ from S, i.e., unblock p̃.

2) Only one of p̃’s children includes bad or good addresses.
In this case, we can replace p̃ with the child that contains
the bad addresses.

3) Both of p̃’s children include bad or good addresses. In
this case, p̃ is already a longest common prefix and we
do not need to do anything.

Clearly, each of these operations transforms feasible solution
S into another feasible solution with smaller or equal collateral
damage while still preserving the capacity constraint. This is
because the transformations filter the same amount of traffic,
just using the longest prefix possible to do so. We can repeat
this process for all prefixes that are in S but not in LCP-
tree(BL ∪ WL), until we create a feasible solution S′ that
includes only prefixes from LCP-tree(BL ∪ WL) and has
smaller or equal collateral damage.

Theorem 3.5: FLOODING (i.e., Eq.(18)-(21)) is NP-Hard.

Proof: To prove that FLOODING is NP-hard, we
consider the knapsack problem with a cardinality constraint:

max
∑
i∈N

pixi (22)∑
i∈N

xi = k (23)

s.t.
∑
i∈N

wixi ≤ C1 (24)

which is known to be NP-hard [11] and we show that it
reduces to FLOODING. To do this, we put FLOODING in a
slightly different form, by making two changes.

First, we change the inequality in Eq. (19) to an equality.
Any feasible solution to FLOODING that uses F < Fmax
filters can be transformed to another feasible solution with
exactly Fmax filters, without increasing collateral damage. In
fact, given a feasible solution S that uses F < Fmax filters,
as long as F < |BL|, it is always possible to remove a
filter from a prefix p and add two filters to the two prefixes
corresponding to p’s children in LCP-tree(BL ∪ WL). The
solution constructed this way uses F + 1 filters, blocks all
addresses blocked in S, and has a cost that is less or equal to
S’s.

Second, we define variables x̄p/l = −xp/l, F̄max = −Fmax
and C̄ = T0 − C and use them to rewrite FLOODING:

max
∑
p/l

gp/lx̄p/l (25)

s.t.
∑
p/l

x̄p/l = F̄max, (26)

∑
p/l

(
gp/l + bp/l

)
x̄p/l ≤ C̄ (27)

∑
p/l:ip∈p/l

−x̄p/l ≤ −1 ∀ip ∈ BL (28)

For a given instance of the problem defined by Eq. (22)-(23),
we construct an equivalent instance of the problem defined
by Eq. (25)-(28) by introducing the following mapping. For
ip ∈ BL ∪ WL: gip = pi, (gip + bip) = wi. For all other
prefixes p/l that are not addresses in the blacklist or whitelist:
(gp/l + bp/l) = C̄ + 1. Moreover, we assign F̄max = k and
C̄ = C1. With this assignment, a solution to the problem
defined by Eq. (22) can be obtained by solving FLOODING,
then taking the values of variables xp/l that are blocked.

Algorithm: Given the hardness of the problem, we do not
look for a polynomial-time algorithm. We design a pseudo-
polynomial-time algorithm that optimally solves FLOODING,
Its complexity is linearly with the number of good and bad
addresses and with the magnitude of Cmax.

Our algorithm is similar to the one that solves BLOCK-
SOME, i.e., it relies on an LCP tree and a DP approach.
However, we now use the LCP tree of all the bad and good
addresses. Moreover, when we compute the optimal filter
allocation for each subtree, we now need to consider not only
the number of filters allocated to that subtree, but also the
corresponding amount of capacity (i.e., the amount of the
victim’s capacity consumed by the unfiltered traffic coming
from the corresponding prefix). We can recursively compute
the optimal solution bottom-up as before:

zp(F, c) = min
n=0,...,F
m=0,...,c

{zsl(F − n, c−m) + zsr (n,m)} (29)

where zp(F, c) is the minimum collateral damage of prefix p
when allocating F filters and capacity c to that prefix.

Complexity: Our DP approach computes O(CFmax) en-
tries for every node in LCP-tree(BL ∪ WL). Moreover, the
computation of a single entry, given the entries of descen-
dant nodes, require O(CFmax) operations, Eq.(29). We can
leverage again the observation that we do not need to com-
pute CFmax entries for all nodes in the LCP tree: At a
node p, it is sufficient to compute Eq.(29) only for c =
0, ..., C̃ = min{C,

∑
ip∈p/l wip} ≤ C and f = 0, ..., F =

max{Fmax, |leaves(p)|}. Therefore, the optimal solution to
FLOODING, zroot(Fmax, C), can be computed in O((|BL|+
|WL|)C2) time. This is increasing linearly with the number
of addresses in BL ∪ WL and is polynomial in C. The
overall complexity is pseudo-polynomial because C cannot
be polynomially bounded in the input size. In the evaluation
section, we present a heuristic algorithm that operates in
increments ∆C of C. Finally, we note that Fmax << C and
thus Fmax does not appear in the asymptotic complexity.
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BLOCK-SOME vs. FLOODING: There is an interesting
connection between the two problems. To see that, consider
the partial Lagrangian relaxation of Eq. (18)–(21):

max
λ≥0

{
min

∑
p/l

[
(1− λ)gp/l − λbp/l

]
xp/l+ (30)

+
∑
p/l

λT0 − λC
}

s.t.
∑
p/l

xp/l ≤ Fmax (31)

∑
p/l:ip∈p/l

xp/l ≤ 1 ∀ ip ∈ BL (32)

For every fixed λ ≥ 0, Eq. (30)–(32) are equivalent to Eq.
(11)–(13) for a specific assignments of weights wip. This
shows that dual feasible solutions of FLOODING are instances
of BLOCK-SOME for a particular assignment of weights. The
dual problem, in the variable λ, aims exactly at tuning the
Lagrangian multiplier to find the best assignment of weights.

F. DISTRIBUTED-FLOODING

Problem Statement: Consider a victim V that connects to
the Internet through its ISP and is flooded by a set of attackers
listed in a blacklist BL, as in Fig.1(a). To reach the victim,
attack traffic passed through one or more ISP routers. Let R
be the set of unique such routers. Let each router u ∈ R
have capacity C(u) on the downstream link (towards V ) and
a limited number of filters F (u)

max. The volume of good/bad
traffic through every router is assumed known. Our goal is to
allocate filters on some or all routers, in a distributed way, so as
to minimize the total collateral damage and avoid congestion
on all links of the ISP network.

Formulation. Let the variables x
(u)
p/l ∈ {0, 1} indicate

whether or not filter p/l is used at router u. Then the
distributed filtering problem can be stated as:

min
∑
u∈R

∑
p/l

g
(u)
p/lx

(u)
p/l (33)

s.t.
∑
p/l

x
(u)
p/l ≤ F

(u)
max ∀u ∈ R (34)

T
(u)
0 −

∑
p/l

(
g
(u)
p/l + b

(u)
p/l

)
x
(u)
p/l ≤ C

(u) ∀u ∈ R (35)

∑
u∈R

∑
p/l3ip

x
(u)
p/l ≤ 1 ∀ip ∈ BL (36)

Characterizing an Optimal Solution. Given the sets BL,
WL, R, and F (u)

max, C(u) at each router, we have:
Proposition 3.6: There exists an optimal solution of DIST-

FLOODING that can be represented as a set of |R| different
pruned subtrees of the LCP-tree(BL∪WL), each correspond-
ing to a feasible solution of FLOODING for the same input,
and s.t. every subtree leaf is not a node of another subtree.

Proof: Feasible solutions of DIST-FLOODING allocate
filters on different routers s.t. Eq.(34) and (35) are satisfied
independently at every router. In the LCP tree, this means

having |R| subtrees, one for every router, each having at most
F

(u)
max leaves and their associated blocked traffic ≥ T

(u)
0 −

C(u), where T (u)
0 is the total incoming traffic at router u. Each

subtree can be thought as a feasible solution of a FLOODING
problem. Eq.(36) ensures that the same address is not filtered
multiple times at different routers, to avoid waste of filters. In
the LCP-tree, this translates into every leaf appearing at most
in one subtree.

Algorithm. Constraint (36), which imposes that different
routers do not block the same prefixes, prevents us from a
direct decomposition of the problem. To decouple the problem,
consider the following partial Lagrangian relaxation:

L(x, λ) =
∑
u∈R

∑
p/l

g
(u)
p/lx

(u)
p/l +

∑
ip∈BL

λip

(∑
u∈R

∑
p/l3ip

x
(u)
p/l − 1

)
=
∑
u∈R

(∑
p/l

(
g
(u)
p/l + λp/l

)
x
(u)
p/l

)
−
∑
ip∈BL

λip (37)

where λip is the Lagrangian multiplier (price) for the con-
straint in Eq.(36), and λp/l =

∑
ip∈p/l λip is the price asso-

ciated with prefix p/l. With this relaxation, both the objective
function and the other constraints immediately decompose in
|R| independent sub-problems, one per router u:

min
∑
p/l

(
g
(u)
p/l + λp/l

)
x
(u)
p/l (38)

s.t.
∑
p/l

x
(u)
p/l ≤ F

(u)
max (39)

T
(u)
0 −

∑
p/l

(
g
(u)
p/l + b

(u)
p/l

)
x
(u)
p/l ≤ C

(u) (40)

The dual problem is:

max
λip≥0

∑
u∈R

hu(λ)−
∑
ip∈BL

λip (41)

where hu(λ) is the optimal solution of (38)-(40) for a given
λ. Given the prices λip, every sub-problem (38)-(40) can be
solved independently and optimally by router u using Eq. (29).
Problem (41) can be solved using a projected sub-gradient
method [11]. In particular, we use the following update rule
to compute shadow prices at each iteration:

λ
(k+1)
ip = λ

(k)
ip + α(

∑
u

∑
p/l3 ip

x
(u)
p/l − 1)

where α is the step size. The interpretation of the update rule
is quite intuitive: for every ip that is filtered with multiple
filters the corresponding shadow price, λip, is augmented
proportionally to the number of times it is blocked. Increasing
the prices has in turn the effect of forcing the router to try to
unblock the corresponding ip. The price is increased until a
single filter is used to block that ip.

Note, however, that since x is an integer variable, x ∈
{0, 1}, the dual problem is not always guaranteed to converge
to a primal feasible solution [13].

Distributed vs. Centralized Solution. When the number of
source attackers is too large to be blocked at a single router,
we need to combine resources such as the overall network
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Fig. 4. Evaluation of BLOCK-ALL in Scenarios I (High Clustering
blacklist) and II (Low Clustering blacklist. We plot the collateral damage
(CD) (normalized over the number of malicious sources N ) vs. number of
filters Fmax. We compare Algorithm 1 to k-means clustering (we simulated
50 runs of Lloyd’s algorithm [14]).

capacity and the number of filters, available at multiple routers
to reduce the overall collateral damage. The optimal allocation
of filters, in that case, can be found by solving Eq.(33)-(36)
provides the optimal allocation of filters in that case.

The solution can be found either in a centralized or in a
distributed way. In a centralized approach, a single node solves
Eq.(33)-(36) and distributes the optimal filter allocation to the
all routers involved. This reduces the communication overhead
between routers, however, the computation burden is put all on
the node that solves both the master problem and |R| different
subproblems. This can become infeasible in practice due to the
large number of attackers.

An alternative approach is to have each router solve its
own sub-problem Eq.(38)-(40) and a single node (e.g., the
victim’s gateway or a dedicated node) to solve the master
problem Eq.(41).The communication overhead of this scheme
is limited. At every iteration of the sub-gradient, the shadow
prices λip’s are broadcast to all routers. For 100,000 of bad
IPs, if we encode the value of variables λip using 2 Bytes,
each router need to send about 200KB of data at each iteration.
Given the λip’s, the routers solve independently a sub-problem
each and return the computed x

(u)
p/l to the node in charge

of the master problem. In general, let N denote the total
number of active IP sources, the communication overhead is
O(N + Fmax) per router per iteration. Our approach only
requires communication between the node solving the master
problem and the nodes solving the subproblems. It does
not entail communication between subproblems, which would
incur a significant communication overhead.

IV. SIMULATION RESULTS

In this section, we evaluate our algorithms using real logs
of malicious traffic from Dshield.org. We demonstrate
that our algorithms bring significant benefit compared to non-
optimized filter selection or to generic clustering algorithms,
in a wide range of scenarios. The reason is the well-known
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Fig. 5. Evaluation of BLOCK-SOME for Scenario II (Low Clustering
blacklist). Three metrics are considered: (a) collateral damage (CD) (b)
number of unfiltered bad IPs (UBIP) (c) and total cost CD + W · UBIP .
The operator expresses preference for UBIP vs. CD by tuning the weights
wb, wg . We considered a high (214) and a low (210) value for W = wb

wg
.

fact that sources of malicious traffic exhibit spatial and tem-
poral clustering [3]–[9], which is exploited by our algorithms.
Indeed, clustering in a blacklist allows to use a small number
of filters to block prefixes with high density of malicious IPs at
low collateral damage. Furthermore, it has also been observed
that good and bad addresses are typically not co-located, which
allows for distinguishing between good and bad traffic [6], [7],
[15], and in our case for efficient filtering of the prefixes with
most malicious sources.

A. Simulation Setup

We used 61-day logs from Dshield.org [10] - a
repository of firewall and intrusion detection logs collected.
The dataset consists of 758,698,491 attack reports, from
32,950,391 different IP sources belonging to about 600 con-
tributing organizations. Each report includes a timestamp, the
contributor ID, and the information for the flow that raised the
alarm, including the (malicious) source IP and the (victim)
destination IP. Looking at the attack sources in the logs,
we verified that malicious sources are clustered in a few
prefixes, rather than uniformly distributed over the IP space,
consistently with what was observed before e.g., in [3]–[7].

In our simulations, we considered a blacklist to be the set
of sources attacking a particular organization (victim) during a
single day-period. The degree of clustering varied significantly
in the blacklists of different victims and across different days.
The higher the clustering, the more the benefit we expect from
our approach. We also simulated the whitelist, by generating
good IP addresses according to the multifractal distribution in
[16] on routable prefixes. We performed the simulations on a
linux-machine with 2.4 GHz processor with 2 GB RAM.

B. Simulation of BLOCK-ALL and BLOCK-SOME

Simulation Scenarios I & II. In Fig. 4, we consider two
example blacklists corresponding to two different victims,
each attacked by a large number of malicious IPs in a single
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day. In order to demonstrate the range of benefit of our
approach, we chose the blacklists with the highest and the
lowest degree of source clustering observed in the entire
dataset, referred to as “High Clustering” (Scenario I) and
“Low Clustering” (Scenario II), respectively. The degree of
clustering of a blacklist is captured by the entropy associated
with the distribution of the IP addresses [17]. Intuitively, a
blacklist with low entropy (i.e., high clustering) contains IP
addresses in a few prefixes and thus is easier to block.

We compare Algorithm 1 to a k-means, which is general yet
prefix-agnostic. k-means is a well-known clustering problem
[18]: the goal is to partition all observations (in our context,
IP addresses) in k clusters such that each address belongs to
the cluster with the nearest mean. We use the most common
algorithm to solve the problem, known as Lloyd’s algorithm
[14], which uses an iterative refinement technique.

BLOCK-ALL. We ran Algorithm 1 in these Scenarios I and
II and we show the results in Fig.4. We made the following
observations. First, the optimal algorithm performs signifi-
cantly better than a generic clustering algorithm that does not
exploit the structure of IP prefixes. In particular, it reduces the
collateral damage (CD) by up to 85% compared to k-means,
when run on the same (high-clustering) blacklist. Second,
the degree of clustering in a blacklist matters: the CD is
lowest (highest) in the blacklist with highest (lowest) degree of
clustering, respectively. Results obtained for different victims
and days were similar and lied in between the two extremes. A
few thousands of filters were sufficient to significantly reduce
collateral damage in all cases.

BLOCK-SOME. In Fig. 5, we focus on Scenario II, i.e., the
Low Clustering blacklist, which is the least favorable input for
our algorithm and has the highest CD (shown in dashed line in
Fig.4). Compared to BLOCK-ALL, which blocks all bad IPs,
BLOCK-SOME allows the operator to trade-off lower CD for
some unfiltered bad IPs by appropriately tuning the weights
assigned to good (wg) and bad (wb) addresses. For simplicity,
in Fig. 5, we assign the same weight wg to all good addresses,
and the same weight wb to all bad addresses. Fig. 5 shows
results for two different values of W = wb

wg
. (However, we

note that our framework has the flexibility to assign different
weights to each individual IP address.)

In Fig. 5(a), CD is always smaller than the corresponding
CD in Fig. 4; they become equal only when we block all bad
IPs. In Fig. 5(b), we observe that BLOCK-SOME reduces
the CD by 60% compared to BLOCK-ALL while leaving
unfiltered only 10% of bad IPs and using only a few hundreds
a filters. In Fig. 5(c), the total cost of the attack (i.e., the
weighted sum of bad and good traffic blocked) decreases as
Fmax increases. The interaction between these two competing
factors is complex and strongly depends on the input blacklist
and whitelist. In the data we analyzed, we observed that CD
tends to first increase and then decrease with Fmax, while
the number of unfiltered bad IPs tends to decrease The ratio
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Fig. 6. Optimal Solution of FLOODING in Scenario III. In (a), we
show the normalized collateral damage, CD/N , as a function of the number
of available filters, Fmax, when C is fixed, C = Cmax. In (b), we show
CD/N as a function of the available capacity, Cmax, when F is fixed,
F = Fmax.

wb/wg captures the effort2 made by BLOCK-SOME to block
all bad IPs and become similar to BLOCK-ALL.

C. Simulation of FLOODING and DIST-FLOODING

Simulation Scenario III. We consider a web server under
a DDOS attack. We assume that the server has a typical
access bandwidth of C = 100 Mbps and can handle 10,000
connections per second (a typical capability of a web server
that handles light content). We assume that each good (bad)
source generates the same amount of good (bad) traffic.
We also assume that Fmax = 12, 000 filters are available
(consistently with the discussion in footnote 1) and we vary
F = 1, ...Fmax. Before the attack, 5, 000 good sources are
picked from [16] and utilize 10% of the capacity. During the
attack, the total bad traffic is 10C = 1Gbps and is generated
by a typical blacklist (141,763 bad source IPs), based on

2Since we picked a ratio wb/wg > 1, bad IPs are more important. When
Fmax is high, the algorithm first tries to cover small clusters or single bad
IPs. In the case of high W , this happens around 10, 000 filters. CD remains
almost constant in this phase, at the end of which all bad IPs are filtered (as
in Fig.5(b)). In the final phase, the algorithm releases single good IPs, which
are less important and all bad IPs are blocked similarly to BLOCK-ALL.
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Dshield logs of a randomly chosen victim for a randomly
chosen day.3

FLOODING - Optimal. Fig. 6(a) and Fig. 6(b) show the
collateral damage of the optimal solution of FLOODING, for
Scenario III, as a function of the number of available filters
Fmax, and of the bottleneck capacity C, respectively.

We simulate two baselines, namely uniform rate-limiting
and source address prefix filtering (SAPF) [15], and we com-
pare them to our approach. The uniform rate limiting approach
drops the same fraction of traffic of all incoming flows,
which is a common practice in DDOS attacks [19]. Since,
in a typical DDOS attack, bad sources outnumber the good
sources, uniform rate-limiting penalizes dis-proportionally the
good sources. While this solution is always applicable and
requires only one rate limiter, more filters (ACLs) can dras-
tically reduce the collateral damage. We simulated one of
the algorithms in [15], referred to as SAPF positive, which
selects Fmax prefixes to allow and denies traffic generated by
all IP addresses outside those prefixes4. It uses clustering to
find O(Fmax) initial IP addresses to allow. Then, it greedily
shortens the length of the allowed prefixes, thus allowing
more traffic, until the available capacity is completely used.
This heuristic solves the FLOODING problem but does not
guarantee an optimal solution. In our simulations, the optimal
solution found by our algorithm, for the same number of
ACLs, reduces the collateral damage by about a factor of 2.
Another observation is that, because of its heuristic nature,
SAPF does not necessarily decrease monotonically with Fmax,
consistently with [15], which might result in inefficient use of
the available filters. In summary, compared to [15], our work
finds the optimal solution, at the lowest possible complexity
(linear in the input size) and for a wider range of problems
(including but not limited to FLOODING).

We also observe that varying the number of filters or the
available capacity has a different impact on the collateral
damage. While the collateral damage decreases drastically as
the number of filters increases, when we increase the available
capacity we observe two trends. First, as capacity increases,
the optimal solution allows traffic from good sources that
do not belong in prefixes with many malicious sources. This
causes a linear decrease with slope equal to the amount of
traffic generated by good sources. For even larger C, good IPs
located in the same prefix as malicious sources are released.
This trend depends on the specific clustering of good and bad
IPs considered as well as on the amount of traffic generated
by both good and bad sources. When the value of F (C) is

3However, because this problem is NP-hard we do not simulate the entire IP
space, but the range [60.0.0.0, 90.0.0.0], which is known to account for the
largest amount of malicious traffic, e.g., see [6]. We also scale all parameters
by a factor of 8, Fmax, Cmax, wi to maintain a constant ratio between the
number of IPs and Fmax, and, the total flow generated and Cmax.

4In [15], there are three heuristics proposed for generating ACL lists: a
positive algorithm (which specifies prefixes to allow and blocks all other
traffic), a negative (which specifies prefixes to block and accepts all other
traffic), and a mixed (with possibly overlapping prefixes). In this paper, we
compare our optimal algorithm for the FLOODING problem only against the
positive algorithm. The positive algorithm was found, in [15], to perform the
best (i.e., have the lowest collateral damage for the same number of ACLs),
followed closely by the mixed algorithm. The negative algorithm performed
the worse; this is why we do not compare against it, although it is more
similar to our approach.
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Fig. 7. Heuristic solution of FLOODING in Scenario IV. An approx-
imate solution (higher CD) is obtained by solving only the sub-problems
zp(f, n∆C) for n ∈ N and C = n∆C ≤ Cmax, n = 1, 2.... The
coarser the capacity increments ∆C, the fewer sub-problems we need to
solve, but at the cost of higher collateral damage. In this scenario, increasing
∆C significantly reduces the computational time by 3 orders of magnitude,
while the percentage of good traffic that is blocked (CD %) is only increased
by a factor 3.

too low, increasing C (F ) does not yield any benefit. Most
of the improvement is obtained when both types of resources
resources (number of filters and capacity) increase.

FLOODING - Heuristic. The benefit of the optimal solution
of FLOODING comes at high computational cost, due to the
intrinsic hardness of the FLOODING problem. To address this
issue, we design a heuristic for solving FLOODING, which
can be tuned to achieve the desired tradeoff between collateral
damage and computational time. In particular, instead of
solving all subproblems, zp(f, c), for all possible values of
f ≤ Fmax and c ≤ Cmax, we consider discrete increments of
capacity c = n∆C, with step size ∆C. If ∆C = min{wip},
the finest granularity of c is considered, and the problem is
optimally solved. If ∆C > min{wip} we may get a sub-
optimal solution, but we reduce the computation cost, as fewer
iterations are required to solve the DP.

Simulation Scenario IV. We consider again a DDOS attack
launched by 61,229 different bad source IPs, based on the
Dshield.org logs. The available capacity, C = 100 Mbps.
Before the attack, the legitimate traffic consumes 1

2C =
50Mbps. During the attack, the total bad traffic generated
is 100C = 10Gbps. This scenario is more challenging than
scenario III, because there is less unused capacity before the
attack, and more malicious traffic during the flooding attack.

In Fig. 7, we show the percentage of good traffic that is
blocked by the heuristic vs. the time required to obtain a
solution, for scenario IV. As we can see in Fig. 7, the optimal
solution of FLOODING (∆C = 1) requires about 1 day of
computation and has a CD that is only 6% of the total good
traffic. Larger values of ∆C allows to dramatically reduce the
computational time by about 3 orders of magnitude while the
CD is only increased by a factor 2-3. This asymmetry was
also the case in other Dshield logs we simulated. This can
be very useful in practice: an operator may decide to use an
approximation of the optimal filtering policy to immediately
cope with incoming bad traffic, and then successively refine
the allocation of filters to further reduce the collateral damage
if the attack persists.
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Fig. 8. Distributed Flooding. This topology exemplifies the part of a
potentially larger ISP topology involved in routing and blocking traffic towards
victim V . The edge routers receive all incoming, malicious and legitimate,
traffic towards victim V and route it through shortest-paths with ties broken
randomly. Any of the traversed routers (indicated with circles) can be used
to deploy ACLs and block the malicious traffic.

DISTRIBUTED-FLOODING. We simulated the scenario
where an ISP utilizes multiple routers to collaboratively block
malicious traffic. We consider the same scenario (III) as for
the optimal flooding for a single router, but now we assume
that the traffic reaches the victim through its ISP, as in Fig.8.

We use a sub-gradient descent method to solve the dual
problem in Eq.(41). In Fig.9, we show the convergence of
the method for two different step sizes: 0.05 and 0.01. We
also compare against the “no coordination” case, when routers
do not coordinate but act independently to block malicious
traffic; this corresponds to the first iteration of the sub-gradient
method. In the next iterations, routers coordinate, through the
exchange of shadow prices λ, and avoid the redundant overlap
of prefixes at multiple locations. This reduces the collateral
damage significantly, i.e., by ∼ 50%.

Increasing the number of routers has two effects. On one
hand, it increases the total number of filters available to block
source IPs and thus can potentially reduce the overall collateral
damage. On the other hand, deploying more routers increases
the communication overhead required to coordinate them. In
Fig. 10 we study the trade-off between reduced collateral
damage and increased communication overhead, as the number
of routers increases. For simplicity, we assume that each router
has the same number of filters, i.e., Fmax = Fumax ∀u ∈ R.
As we can see in Fig. 10, increasing the number of routers
provides a significant benefit in terms of reducing the collateral
damage, while the communication overhead increases only lin-
early with the overall number of filters available, as discussed
in Section . Depending on the bandwidth available and on the
tolerable level of collateral damage, a network administrator
can decide how many routers should be deployed to filter the
attack sources. Our work provides the framework to do so in
a principled way.

V. RELATED WORK

The bigger picture. Dealing with malicious traffic is a hard
problem that requires the cooperation of several components,
including detection and mitigation techniques, as well as
architectural aspects. In this paper, we optimize the use of
filtering - a mechanism that already exists on the Internet
today and is a necessary building block of any bigger solution.
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Fig. 10. Distributed Flooding: CD/N and Communication Overhead
vs. |R| On the x-axis is the number of routers, |R|. On the left y-axis is
the normalized collateral damage, CD/N . On the right y-axis is the overall
communication overhead (MB / iteration) required to coordinate routers. As
CD/N decreases faster than the communication overhead increases, there is
a sweet spot ( 3 routers, for this input blacklist) where we benefit from large
reduction of CD/N while incurring a modest increase in the communication
overhead required.

More specifically, we focus on the optimal selection of which
prefixes to block. The filtering rules can be then propagated by
filtering protocols [19]–[21], and ideally installed on routers
as close to the attack sources as possible. We note, however,
that such protocols typically assume the ability to filter traffic
at arbitrarily fine granularity and focus on where to place
the filters rather on which filters to pick. Therefore, they are
complementary but orthogonal to this work.

We rely on an intrusion detection system or on historical
data, to distinguish good from bad traffic and to provide us
with a blacklist. Detection of malicious traffic is an important
problem but out of the scope of this paper. The sources of
legitimate traffic are also assumed known and used for assess-
ing the collateral damage; e.g., web servers or ISPs typically
keep historical data and know their important customers. We
also consider addresses in the blacklist to not be spoofed.

A practical deployment scenario is that of a single network
under the same administrative authority, such as an ISP or a
campus network. The operator can use our algorithms to install
filters at a single edge router or at several routers, in order to
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optimize the use of its resources and to defend against an
attack in a cost-efficient way. Our distributed algorithm may
also be useful, not only for a routers within the same ISP,
but also, in the future, when different ISPs start cooperating
against common enemies [20].

The problems studied in this paper are also related to fire-
wall configuration to protect public-access networks. Unlike
routers where TCAM puts a hard limit on the number of
ACLs, there is no hard limit on the number of firewall rules, in
software; however, there is still an incentive to minimize their
number and thus any associated performance penalty [22].
There is a body of work on firewall rule management and
(mis)configuration [23], which aims at detecting anomalies,
while we focus on resource allocation.

Measurement studies. Several measurement studies have
demonstrated that malicious sources exhibit spatial and tem-
poral clustering [3]–[7], [9]. In order to deal with dynamic
malicious IP addresses [8], IP prefixes rather than individ-
ual IP addresses are typically considered. The clustering, in
combination with the fact that the distribution of addresses
as well as other statistical characteristics differ for good and
bad traffic, have been exploited in the past for detection and
mitigation of malicious traffic, such as e.g., spam [6], [7] or
DDoS [15]. In this work, we exploit these characteristics for
efficient prefix-based filtering of malicious traffic.

Prefix selection. The work in [15] studied source prefix
filtering for classification and blocking of DDoS traffic, which
is closely related to our FLOODING problem. The selection
of prefixes in [15] was done heuristically, thus leading to
large collateral damage. In contrast, we tackle analytically the
optimal source prefix selection so as to minimize collateral
damage. Furthermore, we provide a more general framework
for formulating and optimally solving a family of related
problems, including but not limited to FLOODING.

The work in [24], is related to our TIME-VARYING
problem: it designed and analyzed an online learning algo-
rithm for tracking malicious IP prefixes based on a stream
of labeled data. The goal was detection, i.e., classifying a
prefix as malicious, depending on the ratio of malicious to
legitimate traffic it generates, and subject to a constraint on the
number of prefixes. In contrast: (i) we identify precisely (not
approximately) the IP prefixes with the highest concentration
of malicious traffic; (ii) we follow a different formulation
(dynamic programming inspired by knapsack problems); (iii)
we use the results of detection as input to our filtering problem.

An earlier body of literature focused on identifying IP
prefixes with significant amount of network traffic, typically
referred to as hierarchical heavy hitters: [25]–[27]. However,
it did not consider the interaction between legitimate the
malicious traffic within the same prefix, which is the core
tradeoff studied in this paper.

Relation to knapsack problems. Filter selection belongs
to the family of multidimensional knapsack problems (dKP)
[11]. The general dKP problem is well-known to be NP-hard.
The most relevant variation is the knapsack with cardinality
constraint (1.5KP) [28], [29], which has d = 2 constraints, one
of them being a limit on the number of items:

∑
j∈N wjxj ≤

C,
∑
j∈N xj ≤ k. The 1.5KP problem is also NP-hard.

These classic problems do not consider correlation between
items. However, in filtering, the selection of an item (prefix)
voids the possibility to select other items (all overlapping
prefixes). dKP problems with correlation between items have
been studied in [30], [31], where the items were partitioned
into classes and up to one item per class was picked. In our
case, a class is the set of all prefixes covering a certain address.
Each item (prefix) can belong simultaneously to any number of
classes, from one class (/32 address) to all classes (/0 prefix).
To the best of our knowledge, we are the first to tackle a case
where the classes are not a partition of the set of items.

A continuous relaxation does not help either. Allowing xp/l
to be fractional corresponds to rate-limiting of prefix p/l. This
has no advantage neither from a practical (rate limiters are
more expensive than ACLs, because in addition to looking
up packets in TCAM, they also require rate and computation
on the fast path) nor from a theoretical point of view (the
continuous 1.5KP is still NP-hard [32].)

In summary, the special structure of the prefix filtering
problem, i.e., the hierarchy and overlap of candidate prefixes,
leads to novel variations of dKP that could not be solved by
directly applying existing methods in the KP literature.

Our prior work. This journal paper builds on our confer-
ence paper in [33]. New contributions in this paper include: the
formulation and optimal solution of the time-varying version
of the filtering problem; an extended evaluation section, which
simulates all filtering problems over Dshield.org logs,
including FLOODING and DIST-FLOODING which were not
evaluated in [33]; and additional proofs, complexity analysis
and simulation results.

In [34], we also studied optimal range-based filtering, where
malicious source addresses were aggregated into continuous
ranges (of numbers in the IP address space [0, 232−1]), instead
of prefixes and we developed greedy solutions. Unfortunately,
ranges are not implementable in ACLs. Furthermore, it is well-
known that ranges cannot be efficiently approximated by a
combination of prefixes [12].

VI. CONCLUSION

In this paper, we introduce a framework for optimal source
prefix-based filtering. The framework is rooted at the theory
of the knapsack problem and provides a novel extension to
it. Within it, we formulate five practical problems, presented
in increasing order of complexity. For each problem, we
designed optimal algorithms that are also low-complexity
(linear or pseudo-polynomial in the input size). We simulate
our algorithms over Dshield.org logs and demonstrate that
they bring significant benefit compared to non-optimized filter
selection or to generic clustering algorithms. A key insight
behind that benefit is that our algorithms exploit the spatial and
temporal clustering exhibited by sources of malicious traffic.
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