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Abstract—We consider the problem of inter-session network
coding for multiple unicast flows over directed acyclic graphs.
Our approach consists of the following steps: (i) The unicast flows
are partitioned into multiple disjoint subsets of unicast flows; (ii)
each subset of unicast flows is mapped to a multicast flow, and
linear network codes are constructed for these multicast flows.
These linear network codes collectively serve as a linear network
code for the original multiple unicast flows, which we refer to as
multicast-packing code (MPC). We formulate a linear program
to evaluate the performance of MPC for a given partition
of the unicast flows. We also propose a practical algorithm,
using simulated annealing, for finding such a partition. Using
simulations, we demonstrate the benefits of the multicast packing
code in terms of achievable common rate and cost, as well as
the efficiency of the partitioning algorithm in terms of running
time.

I. INTRODUCTION

Network coding was originally introduced to maximize the
rate of a multicast flow over a network [1], [2]. Network code
design for this scenario has been solved using polynomial-
time deterministic algorithms [3] or a random approach [4].
Yet, network coding across different sessions, which includes
multiple unicasts as a special case, remains a well-known open
problem. It has been shown that even determining whether
there exists a linear network coding solution to such a problem
is NP-hard [6]. Thus, constructive and sub-optimal approaches,
such as [7]–[12], have been proposed and shown to improve
over routing for multiple unicasts.

In this paper, we introduce a constructive inter-session
network coding scheme for multiple unicast flows, illustrated
in the following example.

Example 1. Let us consider the network N shown in Fig.
1a. In this network, five unicast flows coexist in the network,
where each edge has unit capacity. The ith unicast flow (1 ≤
i ≤ 5) is denoted by ωi = (si, di), where si and di are the
sender and the receiver of ωi, respectively. The set of unicast
flows are represented by Ω = {ωi : 1 ≤ i ≤ 5}.

Let us partition Ω into two disjoint sets, Ω1 = {ω1, ω2, ω3}
and Ω2 = {ω4, ω5}. Also,N is partitioned into two sub-graphs
N1 and N2. The flows in Ω1 and Ω2 are only transmitted
over their respective subgraphs; i.e., flows in Ω1 (Ω2) are
transmitted only over N1 (N2). Then, we construct our codes
to be the network codes for two multicast scenarios: In N1,
d1, d2 and d3 can decode all the source symbols transmitted
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Fig. 1. A motivating example. In the network N shown in (a), five unicast
flows coexist. In (b), these unicast flows are partitioned into two subsets, Ω1 =
{ω1, ω2, ω3} and Ω2 = {ω4, ω5}, and the network N is partitioned into two
sub-graphs N1 and N2. Note that the unicast flows in Ω1 are transmitted only
over N1, while the unicast flows in Ω2 are transmitted only over N2. Then,
we construct linear network codes for Ω1 and Ω2 separately, as shown in
(b), where Xi (1 ≤ i ≤ 5) denotes the source symbol transmitted by si.
Note that the constructed network codes are network codes for two multicast
scenarios over N1 and N2.

by s1, s2 and s3; in N2, d4 and d5 can decode all the source
symbols transmitted by s4 and s5. These network codes also
serve as network codes for the original multiple unicast flows.

Note that several partitions of Ω, other than Ω1 and Ω2

discussed in this example, are also possible. Part of the
contribution of this paper is how to find good partitions. �

The example demonstrates the approach we follow in this
paper. First, we partition the set of unicast flows into disjoint
subsets of unicast flows. Second, we map each subset of
unicast flows to a multicast flow with the same set of receivers,
and linear network codes are constructed for these multicast
flows by a deterministic [3] or a random approach [4]. These
linear network codes collectively serve as a network code for
the original unicast flows, which we refer to as Multicast-
Packing Code (MPC).

MPC has the following strengths. First, the MPC approach,
i.e., partitioning the unicast flows to subsets of unicast flows
and mapping each subset to a multicast network coding prob-
lem, is general enough to be applied to any directed acyclic
graph. Second, given a partition of the set of the unicast flows,
we use a linear program to quickly analyze the performance,
e.g., maximum common rate and minimum cost, achieved
by MPC. In contrast, previous constructive approaches are
difficult to analyze due to the lack of succinct mathematical
formulations. For example, the integer linear programming
(ILP) approach [7] is difficult to analyze since it needs to
consider all possible butterfly structures in the network. On
the other hand, the evolutionary approach [8], does not have
a mathematical formulation. Third, in order to find the best
MPC, we only need to search the space of all partitions of the
set of unicast flows, independently of the network size. This
is clearly more efficient and scalable than other constructive



approaches, whose combinatorial optimization involved the
network graph in addition to the set of flows. For example,
the approach in [7] uses integer linear programming to select
the best set of butterflies considering all pairs of flows, but
also all possible coding points on the network topology. The
evolutionary approach [8] involves a random walk in the space
of local coding vectors, which does not scales well with the
network size. Although independent of the network size, our
search problem is still exponential in the number of unicast
flows. This is why we utilize a suboptimal, yet efficient,
simulating annealing technique to find good partitions of the
unicast flows. Simulation results over appropriately chosen
scenarios demonstrate the above points.

The structure of the rest of the paper is as follows. Section II
presents related work. Section III describes the problem setup.
Section IV presents the multicast packing code approach.
Section V presents a practical flow partitioning algorithm
using simulated annealing. Section VI presents simulation
results. Section VII concludes the paper.

II. RELATED WORK

The inter-session network coding problem across different
flows, which includes multiple unicasts as a special case, is
a well-known open problem. It has been shown that linear
network codes may not be sufficient to achieve capacity region
[5], and determining whether there exists a linear network
coding solution is NP-hard [6]. Thus, constructive and sub-
optimal approaches have been considered.

An integer linear programming (ILP) based approach is pro-
posed in [7] for inter-session network coding across multiple
unicasts. An evolutionary approach is proposed in [8] for the
same problem. Both approaches have to face the scalability
problem. For example, the ILP approach proposed in [7] needs
to consider all possible butterflies in the network, the number
of which increases exponentially with the network size; the
evolutionary approach involves a random walk in the space
of the local coding vectors in the network, which also scales
up exponentially with the network size. Our main difference
is that the search space in our problem is smaller: it depends
only on the number of flows and not on the network size.
However, the complexity is still exponential in the number of
flows, and this is why we employ a suboptimal, yet efficient,
simulated annealing-based partitioning algorithm.

Pairwise inter-session network coding is proposed in [9]
and [10]. A game theoretic approach to inter-session network
coding for two unicast sessions is considered in [11]. A practi-
cal one-hop inter-session network coding scheme is proposed
in [12] over wireless networks. Our main difference is that
our approach is general exploit network coding opportunities
across more than two unicast flows and multi-hop network
coding. An improved genetic algorithm for finding coding ma-
trix for multi-user scenario is proposed in [13]. An interference
alignment approach is considered in [14], [15], [16]. However,
the interference alignment approach might be infeasible for
some networks. Multicast packing were considered earlier, in
[17], but this work doesn’t consider network coding and its
potential in improving rates.

III. PROBLEM SET-UP

We consider a weighted directed acyclic graph N =
(V,E, h), where V and E denote the node set and the edge

set, respectively. h : E → R≥0 is a function such that for
e ∈ E, h(e) equals the capacity of e. We allow multiple
edges between two nodes, and hence E ⊆ V × V × Z+,
where the last integer enumerates edges between two nodes.
The edges are denoted by (u, v, i). If no confusion arises, we
simply use (u, v) to represent edges. The sets of incoming and
outgoing edges at a node v are denoted by In(v) and Out(v),
respectively. We denote the tail and the head of an edge e by
head(e) and tail(e), respectively.

A unicast flow is represented by a tuple ω = (s, d) ∈ V ×V ,
where s, d are the sender and receiver of ω, respectively. We
consider a multiple-unicast scenario, represented by a set Ω
of unicast flows that coexist in the network, i.e., Ω = {ωi =
(si, di) : 1 ≤ i ≤ |Ω|}.

The edge capacities can be any positive real number. In
order to deal with possible non-integer capacities, we consider
a time-extended version of the network as follows. We extend
the length of a time slot by t times, where t is a positive
integer. Hence, each edge e ∈ E can transmit at most k(e) =
dt×h(e)e symbols in an extended time slot. We use a network
N (t) = (V,E(t), h(t)) to represent this time-extended network:
The node set of N (t) is the same as N ; for each e ∈ E, we
add k(e) parallel edges from tail(e) to head(e) in E(t); each
edge e ∈ E(t) has unit capacity, i.e., h(t)(e) = 1. We refer to
N (t) as the t-extension network of N .

We define the following notations to facilitate our discus-
sion. Given Ω′ ⊆ Ω, S(Ω′) and D(Ω′) denote the set of
senders and the set of receivers involved in Ω′, respectively.
For (si, di) ∈ Ω, X(si) denotes the vector of source symbols
that si transmits to di. For v ∈ V , Z−(v) denotes the vector
of the symbols transmitted along the incoming edges at v, and
the source symbols injected by v if v ∈ S(Ω); Z+(v) denotes
the vector of the symbols transmitted along the outgoing edges
at v. Given a vector A, |A| denotes the dimension of A.

We make the following assumptions to simplify our anal-
ysis. (i) The source symbols transmitted by all the senders
in S(Ω) are mutually independent random variables; (ii) the
symbols transmitted in the network take values from a finite
field F2m ; (iii) each edge in E(t) represents an error-free
and delay-free channel; (iv) the senders involved in Ω are all
different, and so are the receivers involved in Ω.

We consider scalar linear network coding over N (t). In this
setup, at each node v ∈ V , Z−(v) is mapped to Z+(v) via
a linear equation, Z+(v) = Z−(v)E(v), where E(v) is a
|Z−(v)| × |Z+(v)| matrix on F2m . For each (si, di) ∈ Ω,
X(si) can be decoded at di via a linear equation, X(si) =
Z−(di)F(di), where F(di) is a |Z−(di)| × |X(si)| matrix on
F2m . E(v) and F(di) are referred to as the encoding matrix at
v and the decoding matrix at di respectively. We group all the
encoding matrices and decoding matrices into a set Φ(t), and
refer to it as a scalar linear network code for the multiple-
unicast scenario Ω over N (t).

The transmission rate of a unicast session (si, di) achieved
by Φ(t) is defined as r(si) = |X(si)|

t . The rate vector achieved
by Φ(t) is defined as r(Φ(t)) = (r(si) : si ∈ S(Ω)). Given
a vector r0 ∈ R|Ω|≥0, if there exists a sequence of scalar linear
network codes, {Φ(tn) : 1 ≤ n < ∞}, where {tn} is a
sequence of positive integers, and Φ(tn) is a scalar linear
network code over the tn-extension network N (tn), such that
limn→∞ r(Φ(tn)) = r0, we say that r0 is linearly achievable.



IV. PACKING MULTICASTS FOR MULTIPLE UNICASTS

A. Multicast-Packing Code

In this section, we present the idea of MPC, i.e., mapping
multiple unicast flows to multicast flows when the partitions of
the original multiple unicast flows are given. The partitioning
problem is considered in Section V. We introduce the follow-
ing notations to facilitate our discussion. We use γ = (s,D),
where s ∈ V and D ⊆ V , to represent a multicast flow such
that the nodes in D all require the source symbols transmitted
by s. A multicast scenario is represented by a set of multicast
flows, i.e., Γ = {(si, D) : 1 ≤ i ≤ |Γ|}, where the nodes in
D require all the source symbols transmitted by all si’s.

A partition of the multiple-unicast scenario Ω is a set of
non-empty disjoint subsets of Ω, G = {Ωi : 1 ≤ i ≤ |G|},
such that Ω =

⋃|G|
i=1 Ωi. Given a partition G, an allocation of

network capacities is represented by a set of functions H =
{hi : E → R≥0 : 1 ≤ i ≤ |G|}, which satisfies the following
condition: ∑|G|

i=1
hi(e) ≤ h(e) ∀e ∈ E. (1)

Given G and H, we can view each Ωi as a multiple-unicast
scenario of smaller scale that works “separately” in a network
Ni = (V,E, hi). For example, in Fig. 1, the allocation of
network capacities are as follows. If e is an outgoing edge of
s1, s2, s3, an incoming edge of d1, d2, d3, or e = e1, h1(e) =
1; otherwise, h1(e) = 0. If e is an outgoing edge of s4, s5,
an incoming edge of d4, d5, or e = e2, h2(e) = 1; otherwise,
h2(e) = 0.

Suppose G and H are already given. We construct a scalar
linear network code for Ω over N (t) as follows. For each Ωi ∈
G, we construct a multicast scenario, Γi = {(sj , D(Ωi)) : sj ∈
S(Ωi)}, over the t-extension network N (t)

i = (V,E
(t)
i , h

(t)
i )

of Ni, where the receivers in D(Ωi) can decode the source
symbols transmitted by all the senders in S(Ωi). A scalar
linear network code Φ

(t)
i can then be constructed for this

multicast scenario. Let Ei(v) and Fi(dj) denote the encoding
matrices and decoding matrices in Φ

(t)
i , respectively. We then

combine the above linear network codes Φ
(t)
i (1 ≤ i ≤ k) into

a scalar linear network code Φ(t) for Ω over N (t) as follows:
Each encoding matrix E(v) in Φ(t) is simply a concatenation
of the encoding matrices Ei(v)’s; however, since each receiver
dj ∈ D(Ωi) only needs X(sj), the decoding matrix F(dj)
in Φ(t) is a sub-matrix of Fi(dj) consisting of the columns
corresponding to X(sj).

We refer to the above scalar linear network code Φ(t) as a
multicast-packing code (MPC) for Ω over N (t) with respect to
(G,H). Given r0 ∈ R|Ω|≥0, if there exists a sequence of MPCs
with respect to (G,H), {Φ(tn) : 1 ≤ n < ∞}, such that
limn→∞ r(Φ(tn)) = r0, we say that r0 is achievable through
MPC with respect to (G,H).

Remark: In the construction of MPC, we can use the
following method. We add a super sender s and connect
it to each sj ∈ S(Ωi) via |X(sj)| parallel edges, each of
which has unit capacity and carries a distinct source symbol
in X(sj). Thus, we transform the multicast scenario with
multiple multicast flows into a multicast scenario with a single
multicast flow. Hence, we can employ the random approach

(a) (b)

Fig. 2. An example of multicast-packing code over a 2-extension network.
The network is shown in (a), where each edge has unit capacity, and 4 unicast
flows coexist in the network. In (b), we show an MPC over a 2-extension
network N (2), which achieves one half rate for each unicast flow.

of [4] or the deterministic approach of [3] to construct linear
network code for this multicast scenario.

Example 2. Consider an example network as shown in Fig. 2.
In this example, each edge has unit capacity, and four unicast
flows coexist in the network, i.e., Ω = {ωi = (si, di) : 1 ≤
i ≤ 4}. We consider a partition G = {Ω1 = {ω1, ω2},Ω2 =
{ω3, ω4}}. The allocation of network capacities is as follows.
If e is an outgoing edge of s1, s2 or an incoming edge of d1, d2,
h1(e) = 1; if e = (u, v), h1(e) = 0.5; otherwise, h1(e) = 0. If
e is an outgoing edge of s3, s4 or an incoming edge of d3, d4,
h2(e) = 1; if e = (u, v), h2(e) = 0.5; otherwise, h2(e) = 0.
An MPC with respect to (G,H) over the 2-extension network
N (2) is shown in Fig. 2b. Clearly, this MPC achieves one half
rate for each unicast flow. �

Proposition 1. The multicast-packing codes as shown in Fig.
1b and Fig. 2b achieve the maximal common rate, which is the
minimum rate each unicast flow must achieve simultaneously.

Proof. Technical report [19].

The choice of G and H is subject to various practical goals,
which we explain in detail in Section IV-C.

B. Achievability of Multicast-Packing Code
In this section, we present the achievability properties of

MPC for a given partition of the unicast flows. We first
introduce the following concept. Given S ⊂ V and d ∈ V −S,
an S − d flow over N is a function f : E → R≥0 which
satisfies the following conditions:

1) For each edge e ∈ E, 0 ≤ f(e) ≤ h(e).
2) For each node v ∈ V − (S ∪ {d}), the following flow

conservation law must be satisfied:∑
e∈In(v)

f(e) =
∑

e∈Out(v)
f(e).

The value of flow f at v ∈ S is defined as val(f, v) =∑
e∈Out(v) f(e)−

∑
e∈In(v) f(e).

The following theorem fully characterizes the rate region
achieved by MPCs with respect to (G,H).

Theorem 1. Assume the size of finite field F2m is greater
than |Ω|. Given a vector r = (r(si) : si ∈ S(Ω)) ∈ R|Ω|≥0, r is
achievable through MPC with respect to (G,H) if and only if
for each Ωi ∈ G and each dj ∈ D(Ωi), there exists a S(Ωi)−
dj flow fij over Ni = (V,E, hi) such that val(fij , sl) = r(sl)
for each sl ∈ S(Ωi).

Proof. Technical report [19].



Example 2 - continued. Let us consider again the ex-
ample provided in Fig. 2a to explain Theorem 1. For
Ωi = Ω1 and dj = d1, we construct a {s1, s2} − d1

flow f11 over N1 = (V,E, h1) as follows: For e ∈
{(s1, u), (u, v), (v, d1), (s2, d1)}, f11(e) = 0.5; otherwise,
f11(e) = 0. For Ωi = Ω1 and dj = d2, we con-
struct a {s1, s2} − d2 flow f12 as follows: For e ∈
{(s2, u), (u, v), (v, d2), (s1, d2)}, f12(e) = 0.5; otherwise,
f12(e) = 0. It is easy to see that val(f1i, sj) = 0.5 for i = 1, 2
and j = 1, 2. Similarly, we can verify the case for Ωi = Ω2

and sj = d3, d4. This indicates that the MPC can achieve a
common rate 1

2 . �

C. Linear Program for MPC

In this section, we formulate a linear program to calculate
the performance achieved by MPCs for a given partition of the
unicast flows. Theorem 1 yields a set of linear constraints to
describe the rate region achieved by multicast-packing code
for a given partition G. In addition to Eq. (1), we add the
following linear constraints:
• For each Ωi ∈ G, dj ∈ D(Ωi) and sl ∈ S(Ωi), the value

of the S(Ωi)− dj flow fij at sl equals r(sl):

r(sl) =
∑

e∈Out(sl)
fij(e)−

∑
e∈In(sl)

fij(e). (2)

• For each Ωi ∈ G and dj ∈ D(Ωi), fij must satisfy the
flow conservation law at each v ∈ V − (S(Ωi) ∪ {dj}):∑

e∈Out(v)
fij(e) =

∑
e∈In(v)

fij(e). (3)

• For each Ωi ∈ G, dj ∈ D(Ωi) and e ∈ E,

0 ≤ fij(e) ≤ hi(e). (4)

Remark: It can be easily seen that if each Ωi only contains
one unicast flow, the above linear constraints are reduced to
those of a routing scheme, in which each node only forwards
the symbols it receives. Hence, routing can be viewed as a
special case of MPC.

In practice, the above constraints can be combined with
additional constraints and various objectives to form a linear
program. In this paper, we consider the following two objec-
tives:
• Maximum common rate: We require that the transmission

rate of each unicast flow must be at least a common rate
r(G). In addition to Eq. (1) and Eq. (2)-(4), we add the
following linear constraint for each sl ∈ S(Ω),

r(sl) ≥ r(G). (5)

The objective is simply:

Maximize r(G). (6)

• Minimum cost: We require that the transmission rate of
each unicast flow ωl must be at least a fixed value ql. In
addition to Eq. (1) and Eq. (2)-(4), we add the following
constraint for each sl ∈ S(Ω),

r(sl) ≥ ql. (7)

Let a : E → R≥0 be a function such that a(e) denotes
the cost of occupying unit capacity along e. The objective
is simply:

Minimize
∑

e∈E

∑|Ω|

i=1
a(e)hi(e). (8)

Remark: As it is seen, the allocation of network capacities
H are decision variables in the above linear programs (see
Eq. (1)). Thus, the solution to these linear programs not only
allows us to evaluate the performance achieved by multicast-
packing code for a given partition G, but also includes H as
part of the LP solution. From practical perspective, we only
need to find the best partition G such that the MPC constructed
from the LP solution achieves the best performance among
all MPCs for Ω. Yet, when |Ω| becomes large, finding such
partition as an LP solution is computationally expensive.
Therefore, we present a practical partitioning algorithm based
on simulated annealing techniques in the next section.

V. SEARCHING FOR GOOD PARTITIONS

In this section, we present a practical partitioning algorithm
to approximate the best partition of Ω by employing simulated
annealing technique [18]. The running process of the algorithm
is divided into stages, each of which is associated with a
positive value T (also called temperature [18]). During each
stage, it performs a random walk in the space of partitions of
Ω. The probability that it moves from the current partition G
to another partition G1 is

Pr(r, r1, T ) =

{
1 if r1 is better than r;

exp(−κ|r1−r|
T

) otherwise.

where r, r1 denote the values of the objective function corre-
sponding to G and G1, respectively. At the end of each stage,
we reduce T by a constant factor. Note that in case G1 is worse
than G, there is still probability that the algorithm will move
to G1. This strategy prevents the algorithm from being stuck at
a sub-optimal partition, which is typical of a greedy strategy.

The algorithm consists of the following parts:
Initialization (lines 1-4): The algorithm starts with a trivial

partition G, in which each Ωi contains only one unicast flow
ωi (line 1). An LP solver is invoked to compute the solution
(r,H) to the linear program constructed from G (line 2),
where r denotes the value of the objective function, and H
the allocation of network capacities included in the solution.
Then, T is initialized to T0 (line 4).

The for-loop (lines 5-22): The major body of the algorithm
is the for-loop. Each iteration of the for-loop corresponds to
a stage. The major body of the for-loop is a while-loop (lines
7-19). At the beginning of the while-loop, the algorithm calls
a function get to generate a new partition G1 from G (line
8). The LP solver is invoked to compute the solution of the
linear program constructed from G (line 9). If r1 is better than
the best objective found previously, the algorithm records this
better solution (lines 10-13). A function oracle is then called
to decide if the algorithm moves to the new partition G1 (lines
14-17). At the end of each stage, T is reduced by a factor η
(line 20).

In the function get, the algorithm first randomly picks up
two distinct subsets Ωi,Ωj , and a unicast session ωl ∈ Ωi.
Then, it moves ωl from Ωi to Ωj , and returns the final



Algorithm 1: Algorithm to find good partition
1 G ← {{ωi} : 1 ≤ i ≤ |Ω|} ; // Initialize partition
2 (r,H)← solve(G) ; // Solve LP
3 (ropt,Hopt)← (r,H); Gopt ← G ; // Store the result
4 T ← T0 ; // Setting initial temperature
5 for i← 1 to α do
6 j ← 1, k ← 1;
7 while j ≤ β and k ≤ ζ do
8 G1 ← get(G) ; // Get a new partition from G
9 (r1,H1)← solve(G) ; // Solve LP

10 if r1 is better than ropt then
11 (ropt,Hopt)← (r1,H1);
12 Gopt ← G1;
13 end
14 if oracle(r, r1, T ) = true then
15 r ← r1,G ← G1 ; // Move to the new partition
16 k ← k + 1 ; // Record successful moves
17 end
18 j ← j + 1;
19 end
20 T ← T ∗ η ; // Decrease temperature by a factor
21 end
22 return (ropt,Hopt,Gopt);

23 function get(G)
24 Select Ωi randomly from G; select ωl randomly from Ωi;
25 Select Ωj randomly from G ∪ {∅} such that Ωi 6= Ωj ;
26 Ωi ← Ωi − {ωl}, Ωj ← Ωj ∪ {ωl};
27 if Ωi is empty then G ← G − {Ωi};
28 return G;

29 function oracle(r, r1, T )
30 if r1 is better than r then return true;
31 Randomly select a number δ in the range [0, 1];
32 if δ < exp(−κ|r−r1|

T
) then return true;

33 else return false;

Fig. 3. An example of the running process of the algorithm. The dashed lines
denote the operations performed by the get function. For example, for the
initial partition, the get function moves ω1 from {ω1} to {ω2}, resulting
in the partition {{ω1, ω2}, {ω3}, {ω4}}. The algorithm reaches the best
partition {{ω1, ω2}, {ω3, ω4}} from the initial partition in three steps.

partition. Fig. 3 shows an example of the running process of
the algorithm for the example of Fig. 2a. The algorithm starts
from {{ω1}, {ω2}, {ω3}, {ω4}}, and reaches the best partition
{{ω1, ω2}, {ω3, ω4}} in three steps.

To deal with large scenarios, we divide the space of parti-
tions of Ω into disjoint sub-spaces, and assign each of them to
a dedicated processor. Then, these processors run the algorithm
in parallel by randomly moving in the assigned sub-spaces. At
last, we choose the best partition returned by these processors.

VI. EVALUATION

A. Simulation Setup
We evaluate the performance of our approach via simu-

lations. We used a network (see Fig. 4), which has been
used by other researchers [8] [7], for our simulations. It has
been shown by previous work [8] [7] that network coding
exhibits better performance than routing only when shared
bottlenecks are present. Thus, in our simulations, we focus
on communication scenarios, where senders are separated
from receivers by bottleneck links, e.g., e5, e6 and e7, that

Fig. 4. The network used for simulation.

have lower bandwidths and higher costs than other links. By
changing the positions of senders and receivers, this network
allows us to investigate the influence of the positions of
bottlenecks on the performance of MPCs. The outgoing edges
of ai’s (1 ≤ i ≤ 9) and the incoming edges of bi’s all
have infinite capacities and zero costs. Each multiple-unicast
scenario Ω is a subset of {(ai, bj) : 1 ≤ i, j ≤ 9} such that the
senders and the receivers are all distinct. We considered the
cases where 3 ≤ |Ω| ≤ 7. For each setting of |Ω|, we randomly
constructed 50 multiple-unicast scenarios. We considered two
objectives, maximum common rate and minimum cost. For
the first objective, we considered two capacity settings for the
edges other than the outgoing edges of ai’s and the incoming
edges of bi’s:

Scenario 1: The edges all have unit capacities.
Scenario 2: h(e2) = h(e5) = h(e7) = 0.5, h(e6) = 0.1.

The other edges have unit capacities. In this network, for the
second objective, each edge has infinite capacity. We required
that each unicast session must achieve at least unit rate. We
considered two cost settings for the edges other than the
outgoing edges of ai’s and the incoming edges of bi’s:

Scenario 3: a(e1) = a(e2) = a(e3) = a(e4) = 10, a(e6) =
100. The other edges have unit costs.

Scenario 4: a(e3) = a(e5) = a(e7) = 10, a(e6) = 100.
The other edges have unit costs.

Scenarios 2-4 model many practical transmission scenarios,
where the end users are communicating with each other
through long-distance links, which usually have limited band-
widths and higher costs than local links. The parameters for
the simulated annealing algorithm were: T0 = 0.5, α = 7,
β = 92, ζ = 46, η = 0.9, κ = 7. We used GLPK 4.47 as the
LP solver. All the simulations were run on a desktop computer
with Intel core i3 CPU and 2GB memory.

B. Simulation Results
Let qm denote the objective obtained by the partitioning

algorithm, qr the optimal objective achieved by routing, and
λsucc the number of scenarios in which qm is better than
qr. We define the following metrics to evaluate the results: i)
Performance gain, λ = |qm−qr|

qr
× 100%; ii) ratio of scenarios

with gains, δ = λsucc

50 × 100%; iii) the average running time
τ of the partitioning algorithm. We averaged the performance
gains over all scenarios with gains. The simulation results are
shown in Table I. We make the following observations:

Except for Scenario 1, the ratio of scenarios for which MPC
achieves gains over routing all increases with |Ω|. Moreover,
under Scenarios 2-4, MPC outperforms routing in almost half
of the scenarios when |Ω| = 6, 7. Under Scenario 3, MPC



TABLE I
SIMULATION RESULTS.

|Ω|
δ (%) λ (%) τ (sec)

3 36 27.78 5.07
4 20 100 4.74
5 10 28.75 11.23
6 46 89.13 9.75
7 34 18.37 13.08

(a) Max. common rate, Scenario 1

|Ω|
δ (%) λ (%) τ (sec)

3 18 94.44 3.23
4 20 100 4.74
5 30 96.67 6.71
6 46 89.13 9.75
7 50 84 15.32

(b) Max. common rate, Scenario 2

|Ω|
δ (%) λ (%) τ (sec)

3 26 27.94 3.47
4 38 21.46 6.64
5 44 26.04 10.20
6 60 26.73 14.01
7 66 25.36 17.78

(c) Min. cost, Scenario 3

|Ω|
δ (%) λ (%) τ (sec)

3 18 30.59 3.91
4 20 29.51 7.11
5 30 27.22 10.8
6 46 24.69 12.16
7 50 23.5 17.76

(d) Min. cost, Scenario 4

outperforms routing for more than 60% of the scenarios when
|Ω| = 6, 7. For these scenarios, MPC is more scalable than
routing in the sense that the chance of obtaining performance
gains through MPC increases with |Ω|.

Under Scenarios 1-2, we observed that MPC achieves con-
siderably better performance than routing for some scenarios.
Under Scenario 2, MPC nearly doubles the performance of
routing for the scenarios with gains. Under Scenarios 3-4,
MPC still achieves a performance gain over routing ranging
from 23% to 30% for the scenarios with gains. Since the ILP-
based approach [7] converges very slow even for four unicast
flows, we compare MPC with the evolutionary approach [8].
We consider the particular scenario presented in [8], where
Ω = {(a1, b7), (a2, b1), (a7, b2), (a8, b5)} and the cost setting
is the same as Scenario 3. For this scenario, MPC achieves a
cost of 148, whereas the best cost achieved by the evolutionary
approach over 30 runs of simulations is 156 [8].

The simulated annealing algorithm is efficient in finding
good partitions. For most scenarios, the running time of the
algorithm never exceeds 17 seconds. This is mainly because
the algorithm only needs to search in the space of the partitions
of Ω. Note that, even for |Ω| = 5, the integer linear program
in [7] contains around 68700 and 1400 variables, and around
67500 and 1700 constraints. This makes the converging speed
of the integer linear program very slow, and may fail to
converge in a reasonable time. In contrast, for |Ω| = 7 and
|G| = 6, our linear program contains only 750 variables and
791 constraints, and each stage of the algorithm takes no more
than 2 seconds for most scenarios. The evolutionary approach
in [8] performs a random walk in the space of the coding
vectors in the network. With each generation taking around
one second, the total running time is around 100 seconds for
100 generations. In contrast, the simulated annealing algorithm
preforms a random walk in the space of the partitions of Ω,
which is much smaller than the space of the coding vectors.
This greatly reduces the random steps the algorithm takes.
The simulation results fully demonstrate the efficiency of the
simulated annealing algorithm in finding good partitions.

VII. CONCLUSION

In this paper, we propose a novel approach, MPC, to
construct linear network code for multiple-unicast scenario.
We propose a set of linear constraints to describe the rate

region achieved by MPC for a given partition of the multiple-
unicast scenario. These linear constraints can be combined
with various objectives and additional constraints to form
linear programs to calculate the performance achieved by
MPC. The succinct formulation of these linear programs
allow us to quickly analyze the performance of MPC. We
further present a practical partitioning algorithm to find good
partitions such that the resulting MPC approximates the best
performance among all MPCs. Simulation results demonstrate
the performance of MPC and the efficiency of the partitioning
algorithm. As part of our ongoing work, we are investigating
how to apply MPC to other problems related to network
coding.
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