Instantly Decodable Network Codes for Real-Time Applications

Anh Le*, Arash S. Tehrani†, Alexandros G. Dimakis‡, Athina Markopoulou*

* {anh.le, athina}@uci.edu – University of California, Irvine
† arash.sabertehrani@usc.edu – University of Southern California
‡ dimakis@austin.utexas.edu – University of Texas, Austin

Abstract—We consider the scenario of broadcasting for real-time applications and loss recovery via instantly decodable network coding. Past work focused on minimizing the completion delay, which is not the right objective for real-time applications that have strict deadlines. In this work, we are interested in finding a code that is instantly decodable by the maximum number of users. First, we prove that this problem is NP-Hard in the general case. Then we consider the practical probabilistic scenario, where users have the i.i.d. loss probability and the number of packets is linear or polynomial in the number of users, and we provide a polynomial-time (in the number of users) algorithm that finds the optimal coded packet. Simulation results show that the proposed coding scheme significantly outperforms an optimal repetition code and a COPE-like greedy scheme.

I. INTRODUCTION

Broadcasting data to multiple users is widely used in several wireless applications, ranging from satellite communications to WiFi networks. Wireless transmissions are subject to packet losses due to channel impairments, such as wireless fading and interference. Previous work has shown that coding can improve transmission efficiency, throughput, and delay over broadcast erasure channels [5]–[7], [9], [34], [35]. Intuitively, the diversity of lost packets across different users creates coding opportunities that can improve various performance metrics.

In this work, we are interested in packet recovery for real-time applications, such as, fast-paced multi-player games and live video streaming. Real-time applications have two distinct characteristics: (i) they have strict and urgent deadlines, i.e., a packet is outdated after a short amount of time, and (ii) they can tolerate some losses, e.g., a client can restore the game state by resyncing periodically [2]. Despite this fault tolerance, these applications can significantly suffer from packet losses that often lead to jittery game animation and low quality video playback. Hence, it is highly desirable to recover packet losses with very low delay and within a very narrow coding window.

Motivated by the above observations, we focus on coding schemes for loss recovery that allows instantaneous decoding, i.e., zero delay. These coding schemes are also known as Instantly Decodable Network Codes (IDNC).

Previous work on IDNC [6], [7], [9]–[12] focused on minimizing the completion delay, i.e., the time it takes to recover all the losses at all users. We formulate a different problem that is more relevant to real-time applications, called Real-Time IDNC: Consider a source that broadcasts a set of packets, \(\mathcal{X} \), to a set of users. Each user \(u \) wants all packets in \(\mathcal{X} \) and already knows a subset of them, \(\mathcal{H}_u \subset \mathcal{X} \), for example through previous transmissions. The goal is to choose one (potentially coded) packet to broadcast from the source, so as to maximize the number of users who can immediately recover one lost packet. This problem is highly relevant in practice yet - to the best of our knowledge - only solved in heuristic ways so far, e.g., see [4], [6]. Our main contributions are the following:

- We show that Real-Time IDNC is NP-hard. To do so, we first map Real-Time IDNC to the Maximum Clique problem in an IDNC graph (to be precisely defined in Section III). We then show that the Maximum Clique problem is equivalent to an Integer Quadratic Program (IQP) formulation. Finally, we provide a reduction from a well-known NP-Hard problem (the Exact Cover by 3- Sets) to this IQP problem.
- We analyze random instances of the problem, where each packet is successfully received by each user randomly and independently with the same probability. This problem, referred to as Random Real-Time IDNC, corresponds to a Maximum Clique problem on an appropriately created random IDNC graph. Surprisingly, we show that when the number of packets is linear or polynomial in the number of users, the Maximum Clique problem can be solved with high probability on this particular family of random graphs, by a polynomial-time (in the number of users) algorithm, which we refer to as the Max Clique algorithm.

We implement and compare our coding scheme, Max Clique, against two baselines: an optimal repetition code and a COPE-like greedy scheme proposed in [6]. Simulations show that our scheme significantly outperforms these state-of-the-art schemes over a range of scenarios, for the loss probability varying from .01 to .99. For example, for 20 users and 20 packets, the our scheme improves by a factor of 1.3 on average, and performs up to 1.6 times better than the COPE-like scheme and up to 3.8 times better than the optimal repetition code.

The remainder of this paper is organized as follows. Section II discusses related work. Section IIIformulates the problem. Section IV describes the maximum clique and integer program formulations as well as the proof of NP-completeness. Sec-
tion V analyzes the probabilistic version (Random Real-Time IDNC problem) and provides the polynomial-time algorithm to find a maximum clique w.h.p. Section VI evaluates and compares our coding scheme with existing schemes. Section VII concludes the paper.

II. RELATED WORK

Instantly Decodable Network Coding. Katti et al. [4] proposed COPE, an opportunistic inter-session network coding scheme for wireless networks. Encoded packets are chosen so that they are immediately decodable at the next hop. The algorithm considers combining packets in a FIFO way (as stored in the transmitting queue) and greedily maximizes the number of receivers that can decode in the next time slot. Keller et al. [6] investigate algorithms that minimize decoding delay, including two algorithms that allow for instantaneous decoding: a COPE-like greedy algorithm and a simple repetition algorithm. In Section VI, we use these two algorithms as baselines for comparison.

Sadeghi et al. [7] improved the opportunistic algorithm in [6] by giving high priority to packets that are needed by a large number of users. The authors also gave an Integer Linear Program formulation to the problem of finding an instantly decodable packet that maximizes the number of beneficiary users. Furthermore, they show that it is NP-hard based on the Set Packing problem. We note that their formulation differs from ours since they require that a coded packet must be instantly decodable by all users, where there may be some users that do not benefit from the packet. This may lead to a suboptimal solution, i.e., there may be a coded packet that is only instantly decodable by some but not all users but is beneficial to a larger number of users. Our formulation ensures that we find this optimal packet.

Sorour et al. have an extensive line of work investigating instantly decodable codes [8]–[13], focusing on minimizing the completion delay. They introduced the term Instantly Decodable Network Coding (IDNC) that we adopt in this work. They propose a construction of IDNC graphs based on feedback from the users in [8] and then introduce a transmission scheme based on graph partitioning. We consider the same construction of IDNC graphs as in [8]. Based on a stochastic shortest path formulation, the authors in [9] propose a heuristic algorithm to minimize the completion delay. In [10], they introduced the notion of generalized IDNC problem, which does not require the transmitted code to be decodable by all users, as in the strict version studied previously [6], [8], [9]. Real-Time IDNC considers the generalized version. Furthermore, in [10], they relate finding an optimal IDNC code to the maximum clique problem in IDNC graphs and suggests that it is NP-Hard; however, no explicit reduction was provided. In [11] and [12] the authors extend [9] to cope with limited or lossy feedback and in [13], to use multicast instead of broadcast.

Li et al. [14] use IDNC for video streaming and show that, for independent channels and sufficiently large video file, their schemes are asymptotically throughput-optimal subject to hard deadline constraints when there are no more than three users. In contrast, we consider an arbitrary number of users and we provide the optimal single transmission.

Index Coding. Our problem setup is the same as in the Index Coding (IC) problem, introduced by Birk and Kol [15] and extensively studied since. Considers a base station that knows a set of packets X and a set of users. Each user (x, H) demands one particular packet $x \in X$ and has side information consisting of a subset of packets $H \subset X$. The base station broadcasts to all users without errors. The goal is to find an encoding scheme that minimizes the number of transmissions required to deliver the packets to all users. There are two differences between our problem and IC. First, in our problem each user wants all the packets, not just a single packet. Second, we want to find an instantly decodable packet that maximizes the number of users that benefit in a single transmission, not the total number of transmissions to satisfy all users.

Data Exchange was introduced by El Rouayheb et al. [22] and has similar setup: there is a set of packets X and a set of users. Each user u knows a subset of packets, $H_u \subset X$, and wants all packets in X. Unlike the IC, there is no base station and the users broadcast messages. Different from IC, the objective is to find an encoding scheme that minimizes the number of transmissions required to deliver all packets in X to all users. Similar to the data exchange problem, in our setting, all users want all the packets in X. There are, however, two differences: (i) in our setting, only the base station can broadcast as opposed to having all users broadcasting, and (ii) we are interested in instantaneous decoding to maximize the number of beneficiary users for one transmission, as opposed to minimizing the total number of transmissions.

III. PROBLEM FORMULATION

Let $\mathcal{U} = \{u_1, \cdots, u_n\}$ denote the set of n users, and $\mathcal{P} = \{p_1, \cdots, p_m\}$ be the set of m packets. We assume that the original m packets were broadcast by a base station. Due to packet loss, each of n users missed some of the m packets. We denote the set of packets that were successfully received by user i by \mathcal{H}_i. Furthermore, let \mathcal{W}_i be the set of packets that user i still wants, i.e., $\mathcal{W}_i = \mathcal{P} \setminus \mathcal{H}_i$. Consistently with [8], [16], we call \mathcal{H}’s and \mathcal{W}’s the “Has” and “Want” sets.

After the initial broadcast, the base station tries to recover the losses, \mathcal{W}’s, by sending coded packets and exploiting the side information of the already delivered packets, \mathcal{H}’s. Let the $n \times m$ matrix A be the identification matrix for the side information of the users, i.e., entry $a_{ij} = 1$ if user u_i wants packet p_j and 0 otherwise. A is also called a feedback matrix, as in [8]–[13]. Let us clarify this by an example.

Example 1. Consider a scenario with 3 users and 6 packets. Furthermore, assume that after the initial broadcast, user u_1 successfully received packets p_1 and p_2; user u_2 received p_3 and p_5; and user u_3 received p_3 and p_6. Thus the side
A coded packet, c^N, is instantly decodable with respect to a set of users, N, if and only if:

(i) Every user, $u_i \in N$, can decode c^i immediately upon reception to recover a packet $p_i \in W_i$. That is, each user in N benefits from c^N by recovering one of the packets from its want set.

(ii) Every packet in the binary sum of c^N is wanted by at least one user in N.

For example, for the scenario of Example 1, the coded packet $c^{\{u_1, u_2, u_3\}} = p_1 + p_3$ is instantly decodable with respect to $\{u_1, u_2, u_3\}$ since u_1 can recover p_1, while u_2 and u_3 can get p_3. Meanwhile, $c^{\{u_2, u_3\}} = p_5 + p_6$ is not instantly decodable with respect to u_1. Furthermore, we do not consider $c^{\{u_2, u_3\}} = p_1 + p_5 + p_6$ instantly decodable with respect to $\{u_2, u_3\}$ since although c can be decoded by u_2 and u_3, p_1, which is a component of c_3, is not needed by either u_2 or u_3. (From here on, we may omit the superscript N of c when there is no ambiguity.) We would like the coded packet to be immediately beneficial to as many users as possible. Thus, our notion of optimality is with respect to the cardinality of the set of beneficiary users $|N|$.

The Real-Time IDNC Problem: Given a side information matrix A, find the optimal instantly decodable packet c^N.

IV. Maximum Cliques in IDNC Graphs

Given a side information matrix A, we form an Instantly Decodable Network Coding (IDNC) graph corresponding to A as in [8]: We create a vertex v_{ij} when user u_i still wants packet p_j. For instance, for matrix A in Example 1, there is a vertex for each entry 1 in the matrix. Given a vertex v_{ij}, we use the term *user index* of v_{ij} to indicate i and *packet index* of v_{ij} to indicate j. There is an edge between two vertices v_{ij} and v_{ik} if one of the below conditions hold:

(i) $j = t$: In this case, both users u_i and u_k wants the same packet $p = p_j = p_t$.

(ii) $p_j \in H_k$ and $p_t \in H_i$: In this case, user u_k has packet p_j that user u_i still wants, and vice versa.

Denote the IDNC graph corresponding to a matrix A by $G^A = (V, E)$. Figure 1 shows the IDNC graph corresponding to the side information matrix given in Example 1.

A. Cliques and Instantly Decodable Packets

Proposition 1. Finding an optimal instantly decodable code given a side information matrix A is equivalent to finding a maximum clique in the corresponding IDNC graph G^A.

We prove this proposition by establishing the following Lemmas 2 and 3. The first lemma states the relationship between instantly decodable packets and cliques in G^A.

Lemma 2. Given a side information matrix A and its IDNC graph G^A, an instantly decodable packet has a one-to-one correspondence to a clique in G^A.

Proof: We first show that a clique in G^A maps to an instantly decodable packet, which is uniquely identified by the user and packet indices of the vertices in the clique.

Let C be a clique in G^A: $C = \{v_{i_1,j_1}, \cdots, v_{i_k,j_k}\}$. Without loss of generality, assume j_1, \cdots, j_k are pair-wise distinct, compute $c = p_{j_1} \oplus \cdots \oplus p_{j_k}$. If $j_1 = j_2 = \cdots = j_n = 1$ then include only j_1 in the XOR.) c is an instantly decodable packet with respect to the set of users $\{u_{i_1}, \cdots, u_{i_k}\}$ because:

- For any user u_{i_s}, for some $s \in [1, k]$, the existence of vertex v_{i_s,j_t} indicates that it wants p_{j_t}. In the following, we show that u_{i_s} can decode for p_{j_t} immediately upon receiving c. Without loss of generality, consider user u_{i_1}. It suffices to show that u_{i_1} has all other packets in c. To see this, assume otherwise, i.e., assume u_{i_1} does not have packet p_{j_t}, for some $s \in [2, k]$ where $p_{j_t} \neq p_{j_s}$. Then there is no edge between v_{i_1,j_t} and v_{i_1,j_s}, (contradiction)

- Each component, $p_{j_t}, t \in [1, k]$, of c is wanted by u_{i_s}.

We now show that an instantly decodable packet maps to a clique in G^A, which is uniquely identified by the packets involved in the set of beneficiary users. Let $C = v_{i_1,j_1}, \cdots, v_{i_n,j_n}$ be an instantly decodable packet with respect to the set of users N. Let v_{i_s,j_t} be wanted by distinct users $\{u_{i_s}^1, \cdots, u_{i_s}^n\}$, for some $n_i > 0$. The following set of vertices, C, form a clique in G^A:

$$C = \{v_{u_{i_1}^1,j_1}, \cdots, v_{u_{i_1}^n,j_1}, \cdots, v_{u_{i_n}^1,j_k}, \cdots, v_{u_{i_n}^n,j_k}\}.$$
For any $t \in [1, k]$, consider any pair $a \neq b, a, b \in [1, n_t]$. There is an edge of type (i) between $v_{u_t^a, j_t}$ and $v_{u_t^b, j_t}$, since both u_t^a and u_t^b need p_{j_t}.

For any pair of $s \neq t, s, t \in [1, k]$, consider $a \in [1, n_s]$ and $b \in [1, n_t]$. There is an edge of type (ii) between $v_{u_t^a, j_s}$ and $v_{u_t^b, j_s}$. This is because u_t^a must have p_{j_s} as it can decode for p_{j_s} immediately, and u_t^b must have p_{j_s} as it can decode for p_{j_s} immediately.

Finally, it is easy to check that for the above two mappings, one is the reverse mapping of the other.

For instance, let us consider the clique involving v_{123}, v_{21} and v_{31} in Example 1. XORing all packets corresponding to vertices of this clique, i.e., $p_1 \oplus p_3$, forms an instantly decodable packet because (i) user 1 must have p_1, and users 2 and 3 must have p_3, otherwise there are no edges (v_{123}, v_{21}) and (v_{123}, v_{31}), and (ii) each component of the coded packet is wanted by the user corresponding to the row of the vertex. The next lemma expresses the relationship between the number of users benefiting from an instantly decodable packet and the size of the clique corresponding to the packet.

Lemma 3. Given a side information matrix A and its IDNC graph G^A, let c^N be an instantly decodable packet, and let C be the corresponding clique of c^N in G^A, then $|C| = |N|$.

Proof: Let $c^N = p_{j_1} \oplus \cdots \oplus p_{j_k}$ be an instantly decodable packet w.r.t. the set of user N. Let p_{j_t}, $t \in [1, k]$, benefits distinct users $\{u_{1_t}^1, \ldots, u_{1_t}^{n_t}\}$, for some $n_t > 0$. The following set of vertices, C, forms the clique corresponding to c^N:

$$C = \{v_{u_{1_t}^1, j_t}, \ldots, v_{u_{1_t}^{n_t}, j_t}, \ldots, v_{u_{k}^1, j_k}, \ldots, v_{u_{k}^{n_k}, j_k}\}.$$

To show $|N| = |C|$, it suffices to show that all user indices of vertices in C are pair-wise distinct. For any pair of $s \neq t$, where $s, t \in [1, k]$, consider any $a \in [1, n_s]$ and any $b \in [1, n_t]$. $u_a^s \neq u_t^b$ because otherwise u_a^s cannot decode for p_{j_1}. □

B. NP-Completeness

Finding a maximum clique in a general graph is well known to be NP-Hard. This result, however, is not directly applicable to IDNC graphs as they have special structural properties. In this section, we will show that the problem of finding a maximum clique in an IDNC graph is indeed NP-Hard. We show this by first showing that finding a maximum clique in an IDNC graph is equivalent to finding an optimal solution to an Integer Quadratic Programming (IQP) problem. We then describe a reduction from a well known NP-Complete problem, the Exact Cover by 3-Set problem, to the decision version of the IQP problem.

1) **Integer Quadratic Programming Formulation:** Given a side information matrix A of size $n \times m$, we formulate the IQP problem as follows. Let r be a binary $n \times 1$ vector: $r_i \in \{0, 1\}, i = 1, \cdots, n$. Similarly, let c be a binary $m \times 1$ vector: $c_j \in \{0, 1\}, j = 1, \cdots, m$. Below is the IQP problem for A:

Maximize: $$V = r^T A c = \sum_{i=1}^n \sum_{j=1}^m r_i c_j a_{ij}.$$ Subject to: $$r_i \sum_{j=1}^m c_j a_{ij} \leq 1, \forall i = 1, \cdots, n. \quad (1)$$ $$r_i, c_j \in \{0, 1\}. \quad (2)$$

Proposition 4. Given a side information matrix A and its IDNC graph G^A, finding a maximum clique in G^A is equivalent to finding an optimal solution to the corresponding IQP.

We prove this proposition by establishing the following Lemmas 5 and 6. The first lemma expresses the relationship between the above IQP problem and the problem of finding maximum clique in G^A.

Lemma 5. Given a side information matrix A and its IDNC graph G^A, a clique in G^A has a one-to-one correspondence to a feasible solution of the IQP problem for A.

Proof:

(⇒) We first show that a clique in the IDNC graph maps to a feasible pair of vectors r and c of the IQP problem, which is uniquely identified by the user and packet indices of the vertices in the clique.

Let C be a clique in G^A : $C = \{v_{i_1, j_1}, \ldots, v_{i_k, j_k}\}$. Let I be the set of user indices: $I = \{i_1, \ldots, i_k\}$, and J be the set of packet indices: $J = \{j_1, \ldots, j_k\}$. We create the feasible pair of r and c as follows: Set $r_i = 1$ if $i \in I$ and 0 otherwise, and set $c_j = 1$ if $j \in J$ and 0 otherwise.

To show that this pair of vectors is a feasible solution, we proceed by showing that condition (1) of the IQP holds for all user indices. Let i be any user index, $i \in [1, n]$. It is clear that (1) holds if $r_i = 0$. When $r_i = 1$, it suffices to show that no two vertices of C have the same user index. Indeed, this follows from the observation that there is no edge between any two vertices having the same user index (on the same row) in the IDNC graph.

(⇐) Next, we show that a feasible solution of the IQP maps to a uniquely identified clique in the IDNC graph. Let the pair of vectors r and c be a feasible solution. We map this pair to a clique C in G^A as follows: Initialize $C = \emptyset$. For $i \in [1, n]$, for $j \in [1, m]$, if $r_i = c_j = a_{ij} = 1$, add vertex v_{ij} to C.

Now pick any pair of vertices v_{si} and v_{pj} in C. It is clear that if $t = q$, there is an edge between these two vertices. It remains to show that when $t \neq q$, user u_s has packet p_q and user u_q has packet p_t. We will show that user u_s must have packet p_t. The other condition follows by symmetry. Assume otherwise, i.e., user u_s does not have packet p_q, which means $a_{sq} = 1$. Since C contains v_{st} and v_{pq}, $r_s = c_t = a_{st} = 1$ and $r_p = c_q = a_{pq} = 1$. But then for row s, condition (1) of the IQP problem fails since

$$r_s \sum_{j=1}^m c_j a_{sj} \geq r_s c_t a_{st} + r_s c_q a_{sq} = 2.$$
Finally, one can readily check that for the above two mappings, one is the reverse of the other.

Lemma 6. Given a side information matrix \(A \) and its IDNC graph \(G^A \), the size of a clique in \(G^A \) equals to the objective value \(V \) of its corresponding feasible solution of the IQP problem for \(A \).

Proof: Let \(C \) be a clique in \(G^A \) and \(r \) and \(c \) be the pair of vector of the corresponding feasible solution. For any user index \(i \) and packet index \(j \), if \(v_{ij} \in C \), then \(r_i = c_j = a_{ij} = 1 \). Hence, every vertex in the clique adds 1 to \(V \).

2) Reduction from Exact Cover by 3-Sets: Given a side information matrix \(A \), the decision version of the IQP problem for \(A \), denoted as D-IQP, asks the following question: “Is there a feasible solution whose objective value equals \(N \), for some \(N > 0 ? “ \)

Proposition 7. The D-IQP problem is NP-Complete.

Proof: Clearly, D-IQP is in NP since given a feasible pair of vectors \(r \) and \(c \), we can compute the objective value in polynomial time \(O(nm) \) time.

In what follows, we show a reduction from the Exact Cover by 3-Sets (X3C) problem to D-IQP. X3C is well-known to be an NP-Complete problem [32] and is defined as follows:

Definition 2. Given a set \(E \) of 3k elements: \(E = \{e_1, \cdots, e_{3k}\} \), and a collection \(F = \{S_1, \cdots, S_{\ell}\} \) of subsets \(S_i \subset E \) and \(|S_i| = 3 \), for it in \([1, \ell], \ell > k \). The X3C problem asks the following question: “Are there \(k \) sets in \(F \) whose union is \(E \)?”

The reduction: Given any instance of X3C, we create 3k users, \(u_1, \cdots, u_{3k} \), and \(\ell \) packets, \(p_1, \cdots, p_\ell \). The users correspond to the elements \(e_i, i \in [1,3k] \), and the packets correspond to the sets \(S_j, j \in [1, \ell] \). We form the side information matrix \(A^{\times 3c} \) corresponding to this X3C instance by setting \(a_{ij} = 1 \) if \(e_i \in S_j \) and 0 otherwise.

Next, we will show that there is a feasible solution to the D-IQP for \(A^{\times 3c} \) whose objective value \(V \) equals 3k if and only if there are \(k \) sets \(S_{j_1}, \cdots, S_{j_k} \) whose union is \(E \).

(\(\Rightarrow \)) Let \(r \) and \(c \) be the pair of vectors of the feasible solution whose objective value \(V = 3k \). First, observe that all \(r_i \), for \(i = 1, \cdots, 3k \), must equal 1; otherwise, assume there exists some index \(t \in [1,3k] \) where \(r_t = 0 \), then

\[
V = \sum_{i=0}^{3k} r_i \sum_{j=0}^\ell c_{jaij} = \sum_{i=0}^{3k} r_i \sum_{j=0}^\ell c_{jaij} < 3k,
\]

since each term \(r_i \sum_{j=0}^\ell c_{jaij} \) is at most 1 by constraint (1). This is a contradiction.

Next, we create the corresponding solution to the X3C problem using \(c \). In particular, for \(j = 1, \cdots, \ell \), we select \(S_j \) if \(c_j = 1 \). Because \(V = 3k \) and \(r_i = 1 \) for all \(i \),

\[
\sum_{j=1}^\ell c_{jaij} = 1, \quad \text{for } i = 1, \cdots, 3k.
\]

Thus, for a user index \(s \in [1,3k] \), there exists a unique packet index \(t \in [1,\ell] \), where \(c_t a_{st} = 1 \), which means \(c_t = a_{st} = 1 \). By construction, we selected set \(S_t \), and also this \(S_t \) covers element \(s \) as \(a_{st} = 1 \). Therefore, each element is contained in exactly one set.

(\(\Leftarrow \)) Let \(S_{j_1}, \cdots, S_{j_k} \) be the solution to the X3C problem. We create the corresponding solution to the D-IQP problem as follows. First, for \(r \), let \(r_i = 1 \) for all \(i = 1, \cdots, 3k \). Then, for \(c \), let \(F = \{j_1, \cdots, j_k\} \), and for \(j = 1, \cdots, \ell \), set \(c_j = 1 \) if \(j \in F \) and 0 otherwise. Since \(S_{j_1}, \cdots, S_{j_k} \) covers all 3k elements and each set has only 3 elements, each element \(e_s \) appears in exactly one set \(C_j \), for some \(t \in [1,k] \), and \(c_j = 1 \). Thus, for each element \(s \in [1,3k] \),

\[
\sum_{j=0}^\ell c_{jaij} = c_{j_s} a_{sj_s} = 1 \cdot 1 = 1
\]

Given the above \(r \) and \(s \),

\[
V = \sum_{i=0}^{3k} r_i \sum_{j=0}^\ell c_{jaij} = 3k \cdot 1 = 3k
\]

From Propositions 1, 4, and 7, we have the following main result of this work.

Theorem 8. Given a side information matrix \(A \) and its IDNC graph \(G^A \), finding a maximum clique in \(G^A \), and equivalently, an optimal instantly decodable packet, is NP-Hard. Their corresponding decision versions are NP-Complete.

V. MAXIMUM CLIQUES IN RANDOM IDNC GRAPHS

In this section, we investigate Random Real-Time IDNC.

In particular, we assume that each user, \(u_i, i \in [1,n] \), fails to receive a packet, \(p_j, j \in [1,m] \), with the same probability \(p \in (0,1) \) independently. For ease of analysis, we assume that \(m \) is linear in \(n: m = d n \), for some constant \(d > 0 \).

(Our results also hold when \(m \) is polynomial in \(n \).) A random IDNC graph, denoted as \(G^A(p) \), is the graph corresponding to a side information matrix \(A \) whose each entry equals 1 with probability \(p \) and 0 with probability \(q = 1 - p \) independently.

Next, we analyze the size of the maximum clique, i.e., the clique number, of random IDNC graphs.

The main results of this section are the following:

(i) For any \(p \in (0,1) \), the clique number for almost every graphs in \(G^A(p) \) is linear in \(n \). In particular, it equals \(j^* pq^{j^*-1} n \), where \(j^* = \mathrm{argmax}_{j \in \mathbb{N}} jq^{j-1} \). With high probability, the optimal recovery packet involves combining \(j^* \) packets.

(ii) With high probability, the maximum clique can be found in polynomial time, \(O(n m^{j^* + \delta}) \), where \(\delta \) is a small constant parameter, and we provide an explicit algorithm to find it. Consequently, the optimal recovery packet can be computed in polynomial time in \(n \).

Comparison to Erdős-Rényi Random Graphs: Clique numbers of Erdős-Rényi random graphs with \(n \) vertices and
$p = 1/2$ are known to be close to $2 \log_2 n$. However, it is widely conjectured that for any constant $\epsilon > 0$, there does not exist a polynomial-time algorithm for finding cliques of size $(1 + \epsilon) \log_2 n$ with significant probability [33]. In contrast, for random IDNC graphs with $n \times m$ vertices, where m is linear or polynomial in n, we show that the clique numbers are linear in n, and corresponding cliques can be found in polynomial time in n.

A. Clique Number of Random IDNC Graphs

First, observe that any k 1’s that lie in the same column form a clique of size k. Since the expected number of 1’s in a single column is np, the expected size of single-column cliques is np. As a result, we expect the maximum clique size to be linear in n.

Fix a set C_j of j columns. A row r is said to be good with respect to C_j if among the j columns, it has 1 one and $j - 1$ zeros. The probability that a row is good w.r.t. C_j is

$$f(j) = j \, p q^{j-1}.$$

Let Z_{C_j} be the number of good rows w.r.t. C_j. Then Z_{C_j} has a binomial distribution: $\text{Bin}(n, f(j))$.

Let X_{C_j} be the size of the maximum clique that has at least one vertex on every column in C_j, i.e., the clique touches j columns. Observe that if $j = 1$, then $f(1) = p$, and $X_{C_1} = Z_{C_1}$, which is the number of 1’s in the chosen column. Thus, X_{C_1} has a Binomial distribution: $\text{Bin}(n, p)$. For $j > 1$, $X_{C_j} \neq Z_{C_j}$ since the set of good rows may not have a 1 in every column in C_j. The following lemma states that for a large k, where $k \geq f \cdots f Z_{C_j} \sim \text{Bin}(n, f(j))$, i.e., given large enough n, $X_{C_j} = Z_{C_j}$ with high probability.

Lemma 9. For a set of constant j columns C_j, there exists a constant $k_j > 0$ such that for all $k \geq k_j$,

$$\Pr[Z_{C_j} = X_{C_j} \mid Z_{C_j} = k] \geq 1 - j \left(\frac{j - 1}{j} \right)^k.$$

Proof: For $k \geq j > 0$, let B^j_k denote the number of ways to put k 1’s into a matrix of size $k \times j$ such that

- each row has one 1, and
- each column has at least one 1.

Note that $B^1_j = 1$, and we have the following recurrence:

$$B^j_k = j^k - \binom{j}{1} B^{j-1}_k - \binom{j}{2} B^{j-2}_k - \cdots - \binom{j}{j-1} B^1_k. \quad (3)$$

This recurrence states that the number of ways to put k 1’s into k rows (each row has one 1) using exactly j columns equals to the number of ways to put k 1’s into k rows without any column restriction subtracts the cases where there are 1, 2, · · · , $j - 1$ empty columns. It can be shown by induction that

$$B^j_k = \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j - i)^k. \quad (4)$$

In detail, assume that (4) is true for all indices $1, 2, \cdots, j - 1$, then following from recurrence (3),

$$B^j_k = j^k - \binom{j}{1} B^{j-1}_k - \binom{j}{2} B^{j-2}_k - \cdots - \binom{j}{j-1} B^1_k = j^k - \binom{j}{1} \sum_{i=0}^{j-2} (-1)^i \binom{j-1}{i} (j - 1 - i)^k - \binom{j}{2} \sum_{i=0}^{j-3} (-1)^i \binom{j-2}{i} (j - 2 - i)^k - \cdots - \binom{j}{j-1} \cdot 1.$$

Now, for any $t \in [1, j - 1]$, the coefficient of $(j - t)^k$ is

$$\sum_{i=1}^{t} \binom{j}{i} \binom{j - i}{t - i} (-1)^{t-i+1}.$$

Thus, it suffices to show that, for any $t \in [1, j - 1]$,

$$\sum_{i=1}^{t} \binom{j}{i} \binom{j - i}{t - i} (-1)^{t-i+1} = (-1)^t \binom{j}{t}.$$

The above equation holds iff

$$\sum_{i=1}^{t} \binom{j}{i} (-1)^{t-i+1} = (-1)^t \binom{j}{t}.$$

Or, equivalently,

$$\sum_{i=1}^{t} \binom{j}{i} (-1)^{t-i} = (-1)^{t+1}.$$

The LHS of the above equation equals

$$-(-1)^t + \sum_{i=0}^{t} \binom{j}{i} (-1)^{t-i} = (-1)^{t+1},$$

where the last “=” follows from the binomial theorem (for $a = 1, b = -1$). This complete the induction to show (4).

From (3), we have that

$$B^j_k = j^k - j(j - 1)^k + \sum_{i=2}^{j-1} (-1)^i \binom{j}{i} (j - i)^k. \quad (5)$$

Let k_j be the minimum positive integer value of k such that

$$\sum_{i=2}^{j-1} (-1)^i \binom{j}{i} (j - i)^k \geq 0.$$

Then, for all $k \geq k_j$,

$$\Pr[Z_{C_j} = X_{C_j} \mid Z_{C_j} = k] = \frac{B^j_k}{j^k} \geq \frac{j^k - j(j - 1)^k}{j^k}.$$

The following lemma states that X_{C_j}, the size of the maximum clique that touches all j columns, heavily concentrates around $nf(j)$ for large n. Intuitively, this follows from $X_{C_j} = Z_{C_j}$ w.h.p. (Lemma 9), and the fact that the Binomial distributed Z_{C_j}, the number of good rows, concentrates heavily around its mean, $nf(j)$.

Lemma 10. For a set of constant j columns C_j and any constant $c > 1$, let $\mu = n f(j)$ and $\delta = \sqrt{\frac{3c \ln n}{n f(j)}}$. For a large n such that $\mu - \mu \delta \geq k_j$ (k_j is as in Lemma 9), we have

$$\Pr[| X_j - \mu | \geq \mu \delta] \leq \frac{2}{n^c} + 2 \mu \delta (1 - \frac{1}{3})^{\mu - \mu \delta}.$$

This probability goes to 0 as $n \to \infty$.

Proof: Denote Z_{C_j} and X_{C_j} by Z and X, respectively. Applying Chernoff’s bound on the Binomial distributed variable Z, we have

$$\Pr[| Z - \mu | \geq \mu \delta] \leq 2 \exp(-\frac{\mu \delta^2}{3}) = \frac{2}{n^c}.$$

Now,

$$\Pr[| X - \mu | \geq \mu \delta] = \sum_{k=1}^{\mu - \mu \delta} \Pr[| X - \mu | \geq \mu \delta | Z = k] \cdot \Pr[Z = k] \leq \sum_{k=1}^{\mu - \mu \delta} \Pr[Z = k] + \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[| X - \mu | \geq \mu \delta | Z = k]$$

$$= \frac{2}{n^c} + \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[| X - \mu | \geq \mu \delta | Z = k]$$

$$\leq \frac{2}{n^c} + 2(\mu \delta - 2)(1 - 1/j)^{\mu - \mu \delta} \quad \text{(from Lemma 9)}$$

$$+ \sum_{k=\mu - \mu \delta + 1}^{\mu + \mu \delta - 1} \Pr[| Z - \mu | \geq \mu \delta | Z = k]$$

$$\leq \frac{2}{n^c} + 2 \mu \delta (1 - 1/j)^{\mu - \mu \delta} + 0.$$

Note that $\mu \delta$ is $\Theta(\sqrt{n \ln n})$; thus, X_{C_j} is within $\Theta(\sqrt{n \ln n})$ of $n f(j)$ w.h.p. Next, for a constant j, let X_j be the size of the maximum clique that touches any j columns. X_j also heavily concentrates around $f(j^*) \times n$, and j^* is the number of packets should be coded together.

Theorem 11. For a constant j and any constant $c > j$, let $\mu = n f(j)$ and $\delta = \sqrt{\frac{3c \ln n}{n f(j)}}$. For a large n such that $\mu - \mu \delta \geq k_j$ (k_j is as in Lemma 9), we have

$$\Pr[| X_j - \mu | \geq \mu \delta] \leq \frac{2d_j}{n^{c-3}} + 2d_j^2 n^j \mu \delta (1 - \frac{1}{3})^{\mu - \mu \delta}.$$

This probability goes to 0 as $n \to \infty$.

Proof: The proof is by using the union bound on the result of Lemma 10:

$$\Pr[| X_j - \mu | \geq \mu \delta] = \Pr[\cup_{C_j} | X_{C_j} - \mu | \geq \mu \delta]$$

$$\leq \left(\frac{m}{j} \right) \Pr[| X_{C_j} - \mu | \geq \mu \delta]$$

$$\leq m^j\left(\frac{2}{n^c} + 2 \mu \delta (1 - 1/j)^{\mu - \mu \delta} \right)$$

$$\leq \frac{2d_j^j}{n^{c-3}} + 2d_j^2 n^j \mu \delta (1 - 1/j)^{\mu - \mu \delta}.$$

We note that the above concentration result also holds when the number of packets, m, is polynomial in the number of user, n, i.e., $m = n^d$, for some constant $d > 0$. However, it needs a larger constant c ($c > d j$), which means less concentration. Apparently, the results do not hold when m is exponential in n. However, the cases where m is either linear or polynomial in n are sufficient for practical purposes as in real-time applications, such as [2], m is often linear in n.

Now let $j^* = \arg\max f(j)$, $j^* \in \mathbb{N}$. There may be a set of
consecutive values of \(j \in \mathbb{N} \) that maximize \(f(j) \), in that case, pick \(j^* \) to be the smallest one among them. For a constant \(p \), \(j^* \) and \(f(j^*) \) are also constant.

Corollary 12. For a sufficiently large \(n \), with high probability, the maximum clique touches a constant number \(j^* \) of columns, where \(j^* = \text{argmax}_j f(j) \).

Proof: Intuitively, this follows from the above result that the size of the maximum clique that touches \(j \) columns heavily concentrates around \(n f(j) \). In detail, for any constant \(j^* \) such that \(f(j^*) < f(j') \). Let \(c > \max(j', j^*) + 1 \). Theorem 11 implies that with high probability, the size of the maximum clique that touches any \(j^* \) column is at most

\[
k' = n f(j') + \sqrt{3cf(j')n \ln n},
\]

and the size of the maximum clique that touches any \(j^* \) column is at least

\[
k'' = n f(j^*) - \sqrt{3cf(j^*)n \ln n}.
\]

For a large enough \(n \), it is clear that \(k' < k'' \).

Fig. 2 plots the function \(f(j) \) for different values of \(p \). This plot shows that (i) for \(p \geq 0.5 \), \(f(j) \) is a decreasing function, and for \(p < 0.5 \), \(f(j) \) initially increases then decreases, and (ii) \(j^* \) increases as \(p \) decreases, which suggests that the number of packets should be coded together increases when the loss rate decreases. Fig. 3 plots the values of \(f(j^*) \) and the corresponding values of \(j^* \). An important observation from Fig. 3 is that even when the loss rate is small, the clique size is still high. For instance, when \(p = 0.1 \), \(j^* = 9 \) and \(f(j^*) \approx 0.38 \), i.e., the optimal coded packet involves coding 9 plain packets together, and this packet will benefit about 38% of the users.

B. Finding a Maximum Clique

Based on the analysis in the previous section, we propose Algorithm 1 to find a maximum clique of a given random IDNC graph. Algorithm 1 examines all cliques that touch \(j \) columns, for all \(j \) combinations of \(m \) columns, where \(j \) is within a small constant \(\delta \) neighborhood of \(j^* \). In the case \(j^* \) is larger than \(m \), \(j^* \) is set to equals to \(m \) (Line 1), exploiting the fact that for \(j < j^* \), \(f(j) \) is an increasing function as shown in Fig. 2.

Complexity. In Algorithm 1, the for each loop starting at Line 3 runs at most \(2\delta j^*=O(nm^{j^*+\delta}) \) times. The for loop starting at Line 5 runs \(n \) times. The if condition check at Line 6 examines up to \(j^* + \delta \) entries. Thus, the total runtime of Algorithm 1 is at most \(2\delta j^* \ln n \), polynomial in \(n \) when \(m \) is linear or polynomial in \(n \).

Algorithm 1 Finding the Maximum Clique

Input: \(p \): loss probability, \(n \): number of users, \(m \): number of packets, \(A \): side information matrix of size \(n \times m \).

Output: \(\mathcal{I} \): vertices of the maximum clique

1. \(j^* \leftarrow \min(m, \text{argmax}_{j \in \mathbb{N}} f(j)) \)
2. \(\mathcal{I}^* = \emptyset \)
3. for each combination of \(j \) columns out of \(m \) columns, where \(j \in [j^* - \delta, j^* + \delta] \)
4. \(\mathcal{I} = \emptyset \)
5. for \(r = 1 \rightarrow n \)
6. if row \(r \) has only one 1 at column \(c \) then
7. Add \((r, c)\) to \(\mathcal{I} \)
8. end if
9. end for
10. if \(|\mathcal{I}| > |\mathcal{I}^*| \) then
11. \(\mathcal{I}^* = \mathcal{I} \)
12. end if
13. end

VI. PERFORMANCE EVALUATION

In this section, we use simulation to compare the performance of the proposed Max Clique algorithm (Algorithm 1) against two baselines proposed in [6]: an optimal repetition-based algorithm, called Best Repetition and a COPE-like greedy-based algorithm. The Best Repetition algorithm re-broadcasts the plain packet that is wanted by the most number of users. This is inherently the best repetition strategy. The COPE-Like algorithm goes through all the packets that are still wanted by at least one user in a random order, and it tries to compute a coded packet that is instantly decodable to all users. In particular, it begins by selecting the first packet, \(c = p_1 \). It then goes through the rest of the packets one by one. At each step \(j, j > 1 \), it XORs the packet \(p_j \) under consideration with \(c = c \oplus p_j \) if the result is still instantly decodable to all users, and it skips \(p_j \) otherwise. For reference, we also include the Random Repetition algorithm, which resends a random packet that is still wanted by at least one user.

Setting. For each loss rate ranging from 1% to 99% per 1% increment, we randomly generate 100 side information matrices. We then run the algorithms on these matrices. For the Max Clique algorithm, we set \(\delta \), the neighborhood around \(j^* \), to 3. Fig. 4 plots the average numbers of beneficiary users as a function of loss rate for the two parameter settings \(\{n = 20, m = 20\} \) and \(\{n = 40, m = 20\} \). For clarity, we skip plotting the standard deviations: they are ranging from 0 to 3 for all algorithms.

Results. In Fig. 4, we can see that the proposed Max Clique algorithm consistently and significantly outperforms all other algorithms. In particular, for the case \(\{n = 20, m = 20\} \), on average, Max Clique performs 1.3 times better than both the Best Repetition and COPE-Like. For the loss rates between 40% and 50%, Max Clique performs up to 1.6 times better than the COPE-Like algorithm, and for the loss rates between
10% and 15%, Max Clique performs up to 3.8 times better than the Best Repetition algorithm. Similar trend but higher improvement, 1.35 times on average and up to 4.5 times, could be observed for the case \(\{n = 40, m = 20\} \) in Fig 4(b).

When the loss rate is larger than a certain threshold (65% in Fig. 4(a)), the performance of Max Clique is similar to that of the Best Repetition, which suggests that Max Clique also tries to select the best uncoded packet. This is because when the loss rate is high, given any pair of 2 plain packets, there exists a user who lost both w.h.p. When the loss rate is larger than another threshold (50% for Fig. 4(a)), the performance of COPE-Like is similar to that of Random Repetition, which suggests that packets cannot be coded together while being instantly decodable to all users. This is because when the loss rate is high, given any pair of 2 plain packets, there exists a user who lost both w.h.p.

VII. CONCLUSION

In this paper, we formulate the Real-Time IDNC problem, which seeks to compute a recovery packet that is immediately beneficial to the maximum number of users. Our analysis shows that Real-Time IDNC is NP-Hard. This is shown by first mapping the problem to the problem of finding maximum cliques in IDNC graphs and then providing a reduction from the Exact Cover by 3-Sets problem. We then analyze the Random Real-Time IDNC, where each user is assumed to lose every packet with the same probability \(p \) independently. When the number of packets is linear or polynomial in the number of users, we show that the optimal packet could be computed in polynomial time, which could be of independent interest. In the future, we plan to extend this work from a single time slot to a constant number of time slots, corresponding to delay tolerance greater than zero.

REFERENCES

